CENTER FORRESEARCHIN /ZF

@ e

OPEN SOURCE SOFTWARE

" Institute for Research & Innovation
in Software for High Energy Physics

SkyhookDM: Ability to Push Back

Query Execution to Client in Case of
Overloaded OSDs

By Eshan Bhargava
Mentor: Jianshen Liu

Background

e SkyhookDM

o Client Server Architecture

o An extension of Ceph for scalable storage of tables

e Work is offloaded to Ceph to process, rather than the client doing work

o The Arrow Dataset API allows the definition of SQL-style expressions to filter data when
reading data from files.

o Normally, expressions are applied after the client receives data from a file system.
o But with Skyhook, these expressions are applied at the server-side.

m Reduces data sent to client.

Problem

e Problem: Storage servers in Ceph may be busy

O

O

O

If clients are always pushing down, the server may become overloaded.
Then may want to reject the request to apply the expressions to the data.

For improved performance, it may be optimal to ‘pushback’ the filtering to the client.

e Solution: Apply expressions at Client

(©)

The storage receives the read request, and decides that it cannot apply the filter to the
data.
Filters and data are pushed back to the client.

When the client receives this result, it can apply the expression to the data.

Progress

e We have finished the main function

o For the parquet file format, we have better resource estimation.
o We can also support the feather file format, but we are working on getting better resource

estimation.

e Working on benchmarking

Implementation

Iterate over a parquet file's rows and columns to find the total_uncompressed_size of
the file in bytes.

o The iteration is over the metadata of parquet files, so the overhead of making the pushing back decision on
the server side is negligible.

Then compare that value to a threshold representing the available RAM of the system.
We compare the CPU load from the sysinfo API to another threshold, representing
system load.

Return a predefined status code, representing pushback.

Use status detail class to return this code to the client.

The expressions and unprocessed data are returned from the server in a bufferlist.

At client, if the scan_op returns this code, apply filtering.

High Level Figure

Resultant Request File and
Table Expressions

Implementation

arrow:: lo¢ : ino, ''scan_op"

auto file = std::make_shared<RandomAccessObject>(hctx,

std::unique_ptr<parquet: JuetFi pe 2t_reader =
parquet::ParquetFileReader::0p

std hared_ptr<parquet: eMeta file tad = parquet

1

Implementation

Implementation

const char StatusOKDet: [d[] = "arrow::StatusDetailOK";
std::string Oh4e<sagc(1nt code) { return "pushback\n"; }

StatusDetailFromOKno: :StatusDetailFromOKno (int code): code (code) {}
const charx StatusDetailFromOKno::type_id() const { return D

std::string StatusDetailFromOKno::ToString() const {
std::: stree .
< "[code " << code_ << "] " << OKMessage(coc
return ss.str();

int StatusDetailFromOKno::code() const { return code_; }

Implementation

template <typename... Args>
arrow: :Status GetStatusFromReturnCode(int code, Args&&... args) {
if(code == 0){
return arrow::Status::0K();
}
if(code > 0) {
return StatusFromOK(code, std::forward<Args>(args)
}
else return arrow::internal::StatusFromErrno(code, arrow::StatusCode::Invalid, std::forward<Args>(args)...);

}

const auto& detail = checked_cast<const skyhook::rados::StatusDetailFromOKno&>(xs.detail());

Thank You!

e | would like to thank CROSS and IRIS-HEP for giving me the opportunity to
work with Skyhook.

e | would also like to thank my mentor, Jianshen Liu, for his help.

e (Questions?

11

