Optimizing fast convolutional neural networks for identifying long-lived particles in the CMS high-granularity calorimeter

Parker Watts,

Juliette Alimena, Yutaro Iiyama, and Jan Kieseler

September 22, 2021

The Setting

Parker Watts

CMS

- The Compact Muon Solenoid(CMS) is a detector at the Large Hadron Collider (LHC)
- General purpose detector designed to observe new physics

HGCal

- The high-granularity calorimeter is a planned upgrade of CMS
- It is designed to give good performance in the endcaps when LHC is upgraded

High-Luminosity Large Hadron Collider(HL-LHC)

- Increase luminosity by factor of 10 (proportional to number of collisions per time)
- Operational from the end of 2027

Long-Lived Particles (LLPs)

Long-Lived Particles

- LLPs can decay far from the protonproton collision
- LLPs arise in many theories of new physics beyond the Standard Model
 - Supersymmetry
 - Elementary Particle nature of Dark Matter
- Triggers that assume decays close to the interaction point may miss LLPs!

SUPERSYMMETRY

Triggers

Triggers

- Not feasible to record every single event
- Most events are not interesting (low-momentum QCD)
- Triggers rapidly decide what information to keep
 - Kinematic constraints, energy requirements, fast calculations using FPGAs
- LHC event rate: 40 MHz
 - Level 1 Trigger at CMS reduces to 100 kHz

Triggers for Long-Lived Particles (LLPs)

- LLP searches span a wide variety of signatures, models, lifetimes, masses, decay locations, etc.
- The signatures are often unusual and not covered by "standard" reconstruction or triggers
- If your data is not triggered, it's lost!
- Dedicated triggers for LLPs are crucial!

CNN Trigger for LLP Decays in HGCal

- Developed a fast convolutional neural network (CNN) to find nonpointing showers in a high-granularity calorimeter (HGCal)
- Computer vision image recognition can easily differentiate between nonpointing and pointing showers
- Proof of concept paper (<u>https://arxiv.org/abs/2004.10744</u>) published in JINST

Colors indicate calorimeter layer number Marker size indicates deposited energy

Neural Network and Training

- Simple CNN designed to provide compromise between performance and resource requirements
- Pixels from φ=0 to φ=0.4 are repeated at φ=2π to account for particles that enter the calorimeter at φ~ 0
 - Therefore 120 pixels in ϕ become 128
- We consider the full HGCAL in one phi slice
- Per-pixel preprocessing: 14 layers and 4 "colors", to make input to CNN blocks small
- Simple CNN + max pool blocks
- Final classifier with low parameter count
- 1 signal event : 70 minbias events for testing

Starting Point: Paper Results

Non-pointing Photon (Signal)

Non-pointing Photon (Signal)

Non pointing Signature

Zoomed in Non-pointing Photon; Conv 0 Filters

Pointing Photon (Background)

Input	pseudo colors	conv0	conv1	conv2	conv3	final dense
			2. 1 × 2 × 2 × 2	an 200 million	1. T.	
			4			
			100 N	$\mathcal{A} \in \mathcal{M}_{\mathrm{sb}}$		
				in the second		0.0442984
a de la comp			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	1. A.		
State Streeth			1. A.			
State Straight	Section and section		(x_1, \dots, x_n)	-		
				•	- -	
Sec. 6 Sec. Alex				<u>, </u>		
No. A. BROWN			• •			
en estatut en des				1		
an a						
				1997 (Mar 1997)		

Add More Maxpooling Layers

- Decrease parameters
- Decrease resolution

conv 1

Add More Maxpooling Layers

- Decrease parameters
- Decrease resolution

Increase Number of Filters

- Increase number of parameters
- Increase complexity

Add More Maxpooling Layers

- Decrease parameters
- Decrease resolution

Increase Number of Filters

- Increase number of parameters
- Increase complexity

Remove/Add CNN Blocks

• Affects number of parameters

Add More Maxpooling Layers

- Decrease parameters
- Decrease resolution

Increase Number of Filters

- Increase number of parameters
- Increase complexity

Remove/Add CNN Blocks

• Affects number of parameters

Remove Preprocessing Layers

 Changes input size to first CNN Block

Per-pixel preprocessing

Add More Maxpooling Layers

- Decrease parameters
- Decrease resolution

Increase Number of Filters

- Increase number of parameters
- Increase complexity

Remove/Add CNN Blocks

• Affects number of parameters

Remove Preprocessing Layers

 Changes input size to first CNN Block

Efficiencies of All Tested Models

E = [10, 30] GeV

Efficiencies of Best Models E = [10, 30] GeV Rate [kHz] 10⁴ ____ 10³ 10² original add block 8 filters 10 3 colors 0.5 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 0 Signal efficiency

Minimizing Resources

• Pruning **removes unused parameters**

• Lowers resource requirements by eliminating unnecessary activations

Minimizing Resources

• Quantization reduces precision of numbers that model must store

Quantization

E = [10, 30] GeV

Resource Requirements with **hls4ml** package

Reminder: We consider the full HGCAL in one phi slice Requirements

MODE	Model	Latency (us)
RESOURCE	Original	115.945
RESOURCE	3 Colors Pruned and Quantized	154.305
LATENCY	Add Block Pruned and Quantized	43.24
LATENCY	3 Colors Pruned and Quantized, reduced final CNN complexity	19.725

Summary

 Continued work beyond the proof of concept paper by optimizing neural network models to identify non pointing showers

• Showed that required latency is likely feasible when implementing the CNN onto an FPGA