Profiling and data access patterns in Allen

Douglas Li
Stanford University

October 2021

Douglas Li Profiling and data access patterns in Allen 4 October 2021 1/26

Table of Contents

© A quick introduction to LHCb
© Allen and GPUs

© Profiling and data access patterns

Douglas Li Profiling and data access patterns in Allen 4 October 2021 2/26

Table of Contents

© A quick introduction to LHCb

Douglas Li Profiling and data access patterns in Allen 4 October 2021 3/26

LHCb detector

@ LHCb is one of four large detectors at the Large Hadron Collider
(LHC)

Douglas Li Profiling and data access patterns in Allen 4 October 2021 4/26

LHCb detector

@ LHCb is one of four large detectors at the Large Hadron Collider
(LHC)

@ The LHC collides high energy beams of protons into each other to
study the particles produced from such collisions.

Douglas Li Profiling and data access patterns in Allen 4 October 2021 4/26

LHCb upgrades

@ The LHCb is currently shut down for upgrades before Run 3 of data
taking. Importantly, Run 3 will not use a hardware trigger.

Douglas Li Profiling and data access patterns in Allen

LHCb upgrades

@ The LHCb is currently shut down for upgrades before Run 3 of data
taking. Importantly, Run 3 will not use a hardware trigger.

@ Only a small fraction of the data read out from subdetectors can be
kept for study: the trigger selects which events to keep.

Douglas Li Profiling and data access patterns in Allen

LHCb upgrades

@ The LHCb is currently shut down for upgrades before Run 3 of data
taking. Importantly, Run 3 will not use a hardware trigger.

@ Only a small fraction of the data read out from subdetectors can be
kept for study: the trigger selects which events to keep.

@ Without a hardware trigger, the software trigger must be redesigned
to handle the full event rate of 30 MHz.

Douglas Li Profiling and data access patterns in Allen 4 October 2021 5/26

Table of Contents

9 Allen and GPUs

Douglas Li Profiling and data access patterns in Allen 4 October 2021 6/26

What is Allen?

5 Allen ®
£

Fork 18
Project ID: 38633

- 5,717 Commits ' 605 Branches ¢’ 16Tags [) 6.3 MBFiles [330.8 GB Storage 7 16 Releases

Full software HLT1 reconstruction sequence on GPU.

master v Alen/ |+ v History Find file Web IDE

A Merge branch ‘dcampora default to_building single _sequence into ‘master’ .. a613023 | B
¥ 5 Christoph Hasse

[® README 7% Apache License 2.0 [3 CONTRIBUTING [CI/CD configuration

Name Last commit
& Dumpers
& Rec/Allen

& ReleaseNotes

& backend

Douglas Li Profiling and data access patterns in Allen 4 October 2021 7/26

What is Allen?

@ "HLT1 reconstruction sequence”: Stage 1 of software trigger. A
sequence of algorithms that does the following tasks:

e "Hits" are identified in each of the VELO, UT, and SciFi detectors.

o (Each detector has several layers, and as particles pass through the
layers, they leave signals in each layer. These signals are hits.)

o These hits are combined to form tracks (trajectories of a particle).

e The tracks are then used to reconstruct primary vertices (p-p collision
points) and secondary vertices (decay points)

@ "GPUs": Graphical Processing Units

Douglas Li Profiling and data access patterns in Allen 4 October 2021 8/26

The layout of a GPU

@ Grid-block-thread hierarchy.

Block (0 0) || Blodk (1, 0) || Block (2, 0)

Block (0. 1| Blodk (1, 1) %k&”

Block (1, 1)

CUDA C++ Programming Guide

Douglas Li Profiling and data access patterns in Allen 4 October 2021

The layout of a GPU

@ Grid-block-thread hierarchy.
@ In CUDA, functions are executed N times by

N different threads.

Threads are grouped into thread blocks which are grouped into grids.

Grid

Block (0 0) || Blodk (1, 0) || Block (2, 0)

Block (0. 1| Blodk (1, 1) %k&”

Block (1, 1)

CUDA C++ Programming Guide

Douglas Li Profiling and data access patterns in Allen

4 October 2021

The layout of a GPU

@ We can take advantage of this hierarchy as follows. Events can be
handled by thread blocks, and individual data in each event
(hits/tracks) can be handled by threads.

Douglas Li

Grid

Block (0 0) || Blodk (1. 0) || Block (2 0)
SRR | oI
JEEISIILTedy | Jerediedine

Block (0 1) Blodk (1, 1)
SRS | Joucais
JLRSHILTedy | Jerteiedin

CUDA C++ Programming Guide

Profiling and data access patterns in Allen

4 October 2021 10 /26

The layout of a GPU

@ We can take advantage of this hierarchy as follows. Events can be
handled by thread blocks, and individual data in each event
(hits/tracks) can be handled by threads.

@ So each event can be processed independently, and the hits/tracks
within that event can also be processed in parallel.

G

rd

Block (0 0) || Blodk (1. 0) || Block (2 0)
SRR | oI
JEEISIILTedy | Jerediedine
Block (0 1) Blodk (1, 1) e (2.1)
SRS | Joucais
JLRSHILTedy | Jerteiedin

- ; 3 .
I i p

- % “
- / ', N
1 K ',
o ; \ .

CUDA C++ Programming Guide

Douglas Li

Profiling and data access patterns in Allen

4 October 2021 10 /26

Table of Contents

© Profiling and data access patterns

Douglas Li Profiling and data access patterns in Allen 4 October 2021 11/26

Profiling Allen

@ We can measure the performance of each algorithm using the
profiling tool NVIDIA Nsight Compute.

Page: Detalls ~ Launch: 47- 616-fit_secondary_vertices ~ ¢ ~ AddBaseline ~ ApplyRules Copy as Image ~

Launch Time Cycles Regs GPU SMFrequency CC Process @000
Current 616- fit_secondary_vertices (935, 1,)x(16,16,1) 358.94usecond 498246 64 GeForce RTX 2080 Ti 139 cycle/nsecond 7.5 [133860] Allen

» GPU Speed Of Light o
High-level overview of the utilization for compute and memory resources of the GPU. For each unit, the Speed Of Light (SOL) reports the achieved percentage of utilization with respect to the theoretical maximum.

SoLSM %] 11.43 | Duration [usecond]

SOL Memory [%] 3448 | Elapsed Cycles [oycle]

SOL L1/TEX Cache [%] 36.48 SM Active Cycles [cycle]

SOL L2 Cache [%] 29.87 | SM Frequency [cycle/nsecond]

SOL DRAM [%] 34.48 | DRAM Frequency [cycle/nsecond]

A Bottioneck s kemel exititslow computetroughput and memory badwidih ization rltv o the pak peformance of hisdevce. Achieved campute thoughut ando memorybanduidihbelow 60.0% ofpekc ypilly
indicate latency issues. Look at or potential reasons.

» Compute Workload Analysis o
Detailed analysis of the compute resources of the streaming multiprocessors (SM), including the achieved instructions per clock (IPC) and the utilization of each available pipeline. Pipelines with very high utlization might limit the overall
performance!

Executed Ipc Elapsed inst/cycle] 0.19| M Busy [%]

Executed Ipc Active inst/cycle] 0.24| Issue Slots Busy [%]

Issued Ipc Active inst/cycle] 024

A High Pipe Utilization Al pipelines are under-utilized. Either this kernel is very small o it doesrit issue enough warps per scheduler. Check the sections for further details.

~ Memory Workload Analysis o

Detailed analysis of the memory resources of the GPU. Memory can become a limiting factor for the overall kemel performance when fully utilizing the involved hardware units (Mem Busy), exhausting the available communication bandwidth
between those units (Max Bandwidth), or by reaching the maximum throughput of issuing memory instructions (Mem Pipes Busy)

Memory Throughput [Gbyte/second] 22867 | Mem Busy [%] 2446
L1/TEX Hit Rate [%] 7261 | Max Bandwidth [%] 3448
L2 Hit Rate [%] 9319 | Mem Pipes Busy [%] 1143

~ Scheduler Statistics o
Summary of the activity of the schedulers issuing instructions. Each scheduler maintains a pool of warps that it can issue instructions for. The upper bound of warps in the pool (Theoretical Warps) is limited by the launch configuration. On

every cycle each scheduler checks the state of the allocated warps in the pool (Active Warps). Active warps that are not stalled (Eligible Warps) are ready to issue their next instruction. From the set of eligible warps the scheduler selects a
single warp from which to issue one or more instructions (Issued Warp). On cycles with no eligible warps, the issue slot is skipped and no instruction s issued. Having many skipped issue slots indicates poor latency hiding.

Douglas Li Profiling and data access patterns in Allen 4 October 2021 12 /26

Warp Stalls

@ The hardware partitions each thread block into warps, which are
groups of 32 threads.

Douglas Li Profiling and data access patterns in Allen 4 October 2021 13 /26

Warp Stalls

@ The hardware partitions each thread block into warps, which are
groups of 32 threads.

@ A warp scheduler schedules warps for execution, but can stall for a
variety of reasons.

Douglas Li Profiling and data access patterns in Allen 4 October 2021 13 /26

Warp Stalls

Profiler indicates that latency is a limiting factor to performance in e.g.
fit_secondary_vertices algorithm.

Warp State (All Cycles)

The x-axis measures the number of cycles per instruction a warp spends in a given stall
state. We see that the LG Throttle stall, with 134.81 cycles/instruction, is the
bottleneck, and that this is related to frequent accesses to local or global memory. So
this hints that we may want to look at how our code accesses memory.

Douglas Li Profiling and data access patterns in Allen 4 October 2021 14 /26

Memory Coalescing

@ The Source Counters section also indicates uncoalesced global
accesses, again suggesting memory accesses as a problem.

» Source Counters. o

Source metrics, including branch efficiency and sampled warp stall reasons. Sampling Data metrics are periodically sampled over the kemel runtime. They indicate when warps were stalled and couldnit be scheduled. See the documentation for
adescription of all stall reasons. Only focus on stalls if the schedulers fail to issue every cycle.

Branch Instructions [inst]

121,248 | Branch Efficiency [%]
Branch Instructions Ratio [%]

98.05
0.03 | Avg. Divergent Branches

691
A Uncoalesced Global Accesses Uncoalesced global access, expected 27896 sectors, got 101552 (3.64x) at PC

fitfvertex |

A Uncoalesced Global Accesses Uncoalesced global access, expected 27896 sectors, got 101552 (3.64x) at PC

fit/vertexf

Uncoalesced Global Accesses Uncoalesced global access, expected 27896 sectors, got 101552 (3.64x) at PC

fit/vertex |

Uncoalesced Global Accesses Uncoalesced global access, expected 27896 sectors, got 101552 (3.64x) at PC

fit/vertex f

Uncoalesced Global Accesses Uncoalesced global access, expected 27896 sectors, got 101552 (3.64x) at PC

fit/vertex {

Uncoalesced Global Accesses Uncoalesced global access, expected 27896 sectors, got 101552 (3.64x) at PC

fitfvertex |

Uncoalesced Global Accesses Uncoalesced global access, expected 27896 sectors, got 101552 (3.64x) at PC

fit/vertex_f

Uncoalesced Global Accesses Uncoalesced global access, expected 27896 sectors, got 101552 (3.64x) at PC

fit/vertex |

Uncoalesced Global Accesses Uncoalesced global access, expected 27896 sectors, got 101552 (3.64x) at PC

fit/vertex |

A
A
A
A
A
A
A
A

Uncoalesced Global Accesses Uncoalesced global access, expected 27896 sectors, got 101552 (3.64x) at PC

fit/vertex |

PC sampling data PC sampling data

Douglas Li Profiling and data access patterns in Allen 4 October 2021 15 /26

Memory Coalescing

@ Threads can only access global memory in fixed-size transactions,
which are 32 bytes in size.

0 128 256 384 512

| | |
g:h‘.-.z.

coalesced

Keskin, Cetin, Kocak 2015

Here we can think of each threadlD as getting the data for some track or hit. Then if
the data for tracks 1-8 is coalesced, only one global access is needed. If not, then
multiple global accesses (in this case 5) are needed to retrieve the data. This leads to

more accesses so warps will stall waiting in the global instruction .queue.

Douglas Li Profiling and data access patterns in Allen 4 October 2021 16 / 26

Struct of Arrays (SOA) vs. Array of Structs (AOS)

@ The question of whether to define data structures as structs of arrays
or arrays of structs appears frequently in parallel programming.

@ Array of structs:

1struct coords {
2 float x;
float v;
Kl float z;

cl
Jj

7coords* array_of_coords;

Douglas Li Profiling and data access patterns in Allen 4 October 2021 17 /26

Struct of Arrays vs. Array of Structs

@ The question of whether to define data structures as structs of arrays
or arrays of structs appears frequently in parallel programming.

@ Struct of arrays:

1struct CoordsArray {
2private:
3 const float * coords;
4 const unsigned num_hits;
5public:
6 /[Constructor
__host__device__ CoordsArray(float * base_pointer, const unsigned offset, const unsigned total_number_of hits) :
m_base_pointer(base_pointer + offset), num_hits(total number_of hits) {}

// Getter functions.

__host_ _ device float x(unsigned index) const { return coords[index]; }

__host__ _ device__ float y(unsigned index) const { return coords[index + num_hits]; }
__host__ device_ float z(unsigned index) const { return coords[index + 2 * num_hits]; }

// Setter functions.

__host__ _ device_ wvoid set_x(unsigned index, float value) { coords[index] = value; }

__host_ _ device_ wvoid set y(unsigned index, float value) { coords[index + num_hits] = value; }
__host__ _ device_ wvoid set_z(unsigned index, float value) { coords[index + 2 * num_hits] = value; }

Douglas Li Profiling and data access patterns in Allen 4 October 2021 18 /26

SOA vs. AOS

@ A general heuristic is to use SOA to keep global memory accesses
coalesced.

Douglas Li Profiling and data access patterns in Allen 4 October 2021 19 /26

SOA vs. AOS

@ A general heuristic is to use SOA to keep global memory accesses
coalesced.

@ However, this intuition is often wrong, and there is no substitute for
trying out both structures and comparing performance.

Douglas Li Profiling and data access patterns in Allen 4 October 2021 19 /26

SOA vs. AOS

@ A general heuristic is to use SOA to keep global memory accesses
coalesced.

@ However, this intuition is often wrong, and there is no substitute for
trying out both structures and comparing performance.

@ Also possible to use combinations of SOA and AOS. And different
variables can be split up into different SOA’s depending on where
they are used.

Douglas Li Profiling and data access patterns in Allen 4 October 2021 19 /26

fit_secondary_vertices

@ The fit_secondary_vertices algorithm uses an array of TrackMVAVertex
structs (AOS) to store all the information needed for a secondary
vertex fit.

es = parameters.d >lidated_:

sv += blockDim.x) {

_sv].trkl = i_tra

j_track;

Douglas Li Profiling and data access patterns in Allen 4 October 2021 20/26

fit_secondary_vertices

@ We change this algorithm and the Kalman filtering algorithm to use
multiple SOA’s. We also cut down on global memory accesses by
declaring data members in register memory.

Douglas Li Profiling and data access patterns in Allen 4 October 2021 21/26

fit_secondary_vertices

@ We change this algorithm and the Kalman filtering algorithm to use
multiple SOA’s. We also cut down on global memory accesses by
declaring data members in register memory.

@ Does the number of warp stalls decrease?

Douglas Li Profiling and data access patterns in Allen 4 October 2021 21/26

fit_secondary_vertices

@ We change this algorithm and the Kalman filtering algorithm to use
multiple SOA’s. We also cut down on global memory accesses by
declaring data members in register memory.

@ Does the number of warp staIIs decrease?

v V¥~ AddBaseline ~ ApplyRules
Time Cycles Regs GPU
ces (924,1, 1x(16,16,1) §76usecond 6825 64 GeForce RTX2080TI 1180y nd 75 [30125] Allen

Warp State (All Cycles)

stall Long Scoreboar|

Stall IMC Miss|

Stall Short Scoreboard|

stall Wait

Selected|

Stall No Instruction

Stall MIO Throttle

Stall Branch Resolving|

Stall LG Thotte|

£

Stall Not Selected|

stall Drain

Stall Math Pipe Throttle

Stall Dispatch Stall

Douglas Li Profiling and data access patterns in Allen 4 October 2021 21/26

fit_secondary_vertices

@ The LG Throttle stall is reduced to 0.32 cycles per instruction. The
largest stall is Long Scoreboard, with 38.57 cycles per instruction.

~ ¥~ AddBaseline ~ ApplyRules
Time Cycles Regs GPU

Stall Long Scoreboard

Stall IMC Miss

stall Short d

Stall Wait

Selected

Stall No Instruction

Stall MI0 Throttle

Stall Branch Resolvin

Stall LG Thvottle

Stall Not Selected

Stall Drain

Stall Math Pipe Thottle

Stall Dispatch Stall

Douglas Li Profiling and data access patterns in Allen 4 October 2021 22/26

@ In the long run, this view-based model can be integrated into the
entire pipeline. This is being worked on by Tom and Daniel.

Douglas Li Profiling and data access patterns in Allen 4 October 2021 23/26

@ In the long run, this view-based model can be integrated into the
entire pipeline. This is being worked on by Tom and Daniel.

@ Ultimate test will be the effect on throughput.

Douglas Li Profiling and data access patterns in Allen 4 October 2021 23/26

Takeaways

@ There are many optimizations that can be made to Allen.

Douglas Li Profiling and data access patterns in Allen 4 October 2021

@ There are many optimizations that can be made to Allen.

@ Profiling tools give a lot of information and can offer a guided look
into speedup opportunities. However it is up to the programmer to
decide which information is relevant and how this information can
inform how we design the code.

Douglas Li Profiling and data access patterns in Allen 4 October 2021 24 /26

@ There are many optimizations that can be made to Allen.

@ Profiling tools give a lot of information and can offer a guided look
into speedup opportunities. However it is up to the programmer to
decide which information is relevant and how this information can
inform how we design the code.

@ Getting maximum performance out of Allen will require carefully
integrating the software with constraints of the hardware, specifically
the CUDA programming model.

Douglas Li Profiling and data access patterns in Allen 4 October 2021 24 /26

Acknowledgments

@ Tom Boettcher and Daniel Campora

Douglas Li Profiling and data access patterns in Allen 4 October 2021

Acknowledgments

@ Tom Boettcher and Daniel Campora

@ University of Cincinnati and DIANA fellows program

Douglas Li Profiling and data access patterns in Allen 4 October 2021 25/26

- Any questions?

Douglas Li Profiling and data access patterns in Allen 4 October 2021 26 /26

	A quick introduction to LHCb
	Allen and GPUs
	Profiling and data access patterns

