Instrumenting and Studying Adam and Other Optimization Algorithms in Pytorch

Sullivan Bailey-Darland

Oregon State University

DIANA Undergraduate Fellow 2021

What is machine learning?

- Computer algorithms that can learn.
- Used in a wide variety of problems
- Neural networks are a type of ML.

What is optimization? (for neural networks)

- Training a model is iterative
- Needs loss/cost function
- Uses gradient descent
- Minibatch and epoch

What is Adam? ("<u>Ada</u>ptive <u>m</u>oment estimation")

Commonly used optimization algorithm developed in 2014¹

Instead of using just the gradient, calculates momentum variables

Uses these to take a smarter path and train faster and better

```
Require: \alpha: Stepsize
Require: \beta_1, \beta_2 \in [0, 1): Exponential decay rates for the moment estimates
Require: f(\theta): Stochastic objective function with parameters \theta
Require: \theta_0: Initial parameter vector
   m_0 \leftarrow 0 (Initialize 1<sup>st</sup> moment vector)
   v_0 \leftarrow 0 (Initialize 2<sup>nd</sup> moment vector)
   t \leftarrow 0 (Initialize timestep)
   while \theta_t not converged do
       t \leftarrow t + 1
       g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1}) (Get gradients w.r.t. stochastic objective at timestep t)
      m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t (Update biased first moment estimate) v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 (Update biased second raw moment estimate)
       \widehat{m}_t \leftarrow m_t/(1-\beta_1^t) (Compute bias-corrected first moment estimate)
       \hat{v}_t \leftarrow v_t/(1-\beta_2^t) (Compute bias-corrected second raw moment estimate)
       \theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon) (Update parameters)
   end while
   return \theta_t (Resulting parameters)
```

1. Kingma, D. P., & Ba, J. (2017). Adam: A Method for Stochastic Optimization. arXiv [cs.LG]. Opgehaal van http://arxiv.org/abs/1412.6980

Visualizing a simple example: linear regression

- Minimizes $\sum (y_{pred} y_{data})^2$
- Only 2 parameters (y = mx +
 b), can be plotted.
- Easy to visualize model prediction

y = mx + b

Model parameters over training

Loss as a function of the parameters

Building tools for analyzing larger models

Too many parameters
Too many steps

Over each epoch, look at the amount and "direction" of the change in parameters.

Step size/ amount of change

$$\|\mathbf{x}\|_2 = \left(\sum_{i=1}^N |x_i|^2\right)^{1/2} = \sqrt{x_1^2 + x_2^2 + \dots + x_N^2}$$

Angle between steps/direction of change

For linear regression

For linear regression

Size of epoch steps over training

Real application: DDplus model

Real application: trained DDplus model

Real application: AllCNN model

Speeding up optimization?

If consecutive steps are in the same direction, can you take larger steps?

If the loss repeatedly jumps up, should you take smaller steps?

Adaptive learning rate

Increase the learning rate if epochs are in the same direction

EVE algorithm

Evaluate loss in epoch direction, and if the loss continues decreasing take a larger step

Careful learning rate

If the loss jumps up, decrease the learning rate

Current conclusions

- Training seems relatively unique for each model
- Visualizations can help compare training between models
- Early evidence that these methods can speed up some of the training

Image credits

- Neural network: https://upload.wikimedia.org/wikipedia/commons/thumb/9/99/Neural network example.svg/800px-Neural network example.svg.png
- Gradient descent: <u>https://blog.clairvoyantsoft.com/the-ascent-of-gradient-descent-23356390836f</u>
- Vector norm:
 https://towardsdatascience.com/why-norms-matters-machine-learning-3f08120af429
- Inner product angle: https://upload.wikimedia.org/wikipedia/commons/thumb/0/05/Inner-product-angle.png