hepfile

S Matt Dreyer (Cornell) —
Matt Bellis élena College)

What is the problem we're trying to solve?

e HEP data is heterogeneous and complicated!
e HEP-native example is particle physics

experiment
o Sensors find muons, electrons, jets, etc.
o Each particle has specific data attached to it (momentum,
charge, etc.)
o Each event (collision) might have different numbers of
these particles

| Residence: House, 4, 2.5, 1500, 1955, 250000
e Consider a census of a town, with data gathered Q D

per household
o Each household has people, cars, and place of residence

o O e
T
Each person has name, gender, and age Q Q e
oo D
oo b

Person 2: Tommie,Thoren,NB,18,168,0,12

Person 3: David,Haley.F,14,150,0,9

(@)
o Each car has age and license plate
o Each house has # of bedrooms and bathrooms

How to solve it , ROOT

Current solutions: ROOT! " Data Analysis Framevvork

Vs 7TV La 5058 Nia8TaV.Lu 5208

Problems: Monolithic

PyROOT helps but still tied to a file format that is bound
to the analysis toolkit

Makes it difficult to interface with non-HEP people (e.g.
broader computing community)

ro Alternative ROOT-file approaches:

uproot/awkward ecosystem

AWkWaI'd But this is still using the ROOT file format
Array (uproot).

Early attempt - hShep —

Particle Physics Playgroun

e Package originally called h5hep
(2017)

e Based on organizing HEP-like data
into HDF5 file format

o Hierarchical Data Format 5

o Open source

o Datasets stored in group, stored in
groups, etc.

e Used on Particle Physics Playground
website for physics pedagogy

o Data from CMS, BaBar, CLEO, and others

o File format was originally zipped textfiles

Image credit :

https://www.neonscience.ora/resources/learning-hub/tutorials/about-hdf5

https://www.neonscience.org/resources/learning-hub/tutorials/about-hdf5

Enter Matt D!

What we had What we wanted to have

e Basics of hepfile e Add some functionality
o Hold strings

e Could be pip installed o Add attributes

e Basics of ReadThe Docs e Get documentation better

Use Henry Schreiner’s scikit-cookiecutter
to make the package more robust for
distribution

Add functionality to work with awkward
Make code more robust and
fault-tolerant

Add necessary unit tests

—) e Get Cl working

Scikit-HEP: cookie

e e Submit to JOSS! (ournal of Open-Source
T Software)

https://github.com/scikit-hep/cookie

hepfile is born!

h5hep — hepfile (Summer 2021)

Define a schema

o How data is organized

o What metadata needs to be stored to organize the data
Define minimal useful API for flexibility

Then, implement itin
o Python
o HDF5
Hierarchical Data Format 5
o Opensource
o Groups — datasets
o Singletons
o Metadata
Define structure of two python dictionaries to
help with packing/unpacking data
o Analogous to ROOT's TTree/Leaf/Branch

metadata

datasets
metadata
group — group
/ metadata
tad t: t: d t:
\ metadata metadata metadata
=
E metadata
metadata
Image credit :

https://www.neonscience.org/resources/learning-hub/tutorials/about-hdf5

https://www.neonscience.org/resources/learning-hub/tutorials/about-hdf5

What is hepfile?

e Data organized into events/buckets
e hepfile groups data of similar types

together in datasets
o Keep bucket data using ‘counter’ field in dataset

e Pack takes buckets -> groups and datasets
e Unpack takes groups and datasets ->

buckets
o Extracts specific bucket ‘i from datasets

Residence

Vehicles

Residence: House, 4, 2.5, 1500, 1955, 250000

Person 0: Ollie, Defelice, M, 54, 159, 75000. BS

Person 1: Marjorie,Williams,F,52,140,80000,MS

Person 2: Tommie,Thoren,NB,18,168,0,12

Person 3: David,Haley,F,14,150,0,9

Vehicle 0: Car,4,Gas,2005,25000

Vehicle 1: Car,5,Electric,2018,40000

Vehicle 2: Bike,1,Human,2015,500

Vehicle 3: Bike,1,Human,2015,500

Vehicle 4: Bike,1,Human,2015,500

"

=
b
o

Vehicle 5: Bike,1,Human,2015,500

Residence: House, 4, 2.5, 1500, 1955, 250000

pack

Person 0: Ollie, Defelice, M, 54, 159, 75000. BS

Person 1: Marjorie,Williams,F,52,140,80000,MS

Person 2: Tommie,Thoren,NB,18,168,0,12

Person 3: David,Haley,F,14,150,0,9

Vehicle 0: Car,4,Gas,2005,25000

Vehicle 1: Car,5,Electric,2018,40000

Vehicle 2: Bike,1,Human,2015,500

Vehicle 3: Bike,1,Human,2015,500

Vehicle 4: Bike,1,Human,2015,500

"

=
b
o

Vehicle 5: Bike,1,Human,2015,500

hepfile data storage

Event 1476 nJ Jets nM Muons
3 3 E px py pz Tag 2 E px Py pz Q | Track
183.93|103.32 28.36 | 147.43| 1.61 2 |183.93(103.32| 28.36 [147.43(1.61 | 1 [128.29(123.98 -20.59(25.77| 1 | Inner
435.74| -76.96 | 19.05 | 428.39| -1.00 A 435.74| -76.96 | 19.05 |428.39| -1.00 A 59.33 | -41.91| -41.99(-1.04 [-1 |Global
86.67 | -1.77 | -52.68| 70.97 | -1.00 86.67 | -1.77 | -52.68 | 70.97 | -1.00 75.34 | 60.72 | -50.85| 63.21| -1 |Global
2 482.97| 91.73 | 31.05 [456.72(1.00
128.29/123.98(-20.59| 25.77| 1 | Inner 101.37| 36.45 | -76.82 | 63.56 | -1.00 -
59.33 | -41.91(-41.99| -1.04 [-1 |Global
Event 1477
2
482.97| 91.73 | 31.05 | 456.72| 1.00
101.37| 36.45 | -76.82| 63.56 | -1.00
1
75.34 | 60.72 | -50.85| 63.21 | -1 |Global

<

Event 1478

-
hepfile - usage
hepfile.create_group(my_data, 'my_group', counter = 'my_counter')

hepfile.create_dataset(my_data, 'my_dataset', group = 'my_group', dtype = str)

hepfile.create_dataset(my_data, ['datal', 'data2'] , group = 'my_group')

for i in range(5)
my_bucket['my_group/my_dataset'] = 'yes'
my_bucket['my_group/datal'] = 1.8
my_bucket['my_group/data2'] = 2.8
my_bucket['my_unique'] = 3

hepfile.pack(my_data, my_bucket)

hepfile.write_to_file('my_file.hdf5', my_data)

hepfile - Read The Docs is getting populated!

hepfile.read module < hepfile.write.pack(data, bucket, AUTO_SET_COUNTER=True, EMPTY_OUT BUCKET=True,
STRICT_CHECKING=False, verbose=False)

Takes the data from an bucket and packs it into the data dictionary, intelligently, so that it can
be stored and extracted efficiently. (This is analagous to the ROOT TTree::Fill() member
function).

hepfile.read.calculate_index_from_counters(counters)

hepfile.read.get_file_metadatalfilename) Parameters: e **data** (dict) - Data dictionary to hold the entire dataset EDIT.
* **bucket** (dict) - bucket to be packed into data.

« **EMPTY_OUT_BUCKET** (bool) - If this is True then empty out the
bucket container in preparation for the next iteration. We used to ask the
hepfile.read.get_nbuckets_in_data(data) users to do this “by hand” but now do it automatically by default. We allow

the user to not do this, if they are running some sort of debugging.

Get the file metadata and return it as a dictionary

Get the number of buckets in the data dictionary.

This is useful in case you've only pulled out subsets of the data

hepfile.write.write_file_metadatalfilename, mydict={], write_default_val True, append=True)

hepfile.read.get_nbuckets_in_file(filename) Writes file metadata in the attributes of an HDF5 file

G hE Tiimbar o Bicakets I tha Rla Args: filename (string): Name of output file

mydict (dictionary): Metadata desired by user

hepfile.read.load(filename=None, verbose=False, desired_datasets=None, subset=None) write_default_values (boolean): True if user wants to write/update the

default metadata: date, hepfile version, h5py version, numpy version, and Python version,

Reads all, or a subset of the data, from the HDF5 file to fill a data dictionary. Returns an empty
false if otherwise.

dictionary to be filled later with data from individual buckets.

Parameters: e **filename** (String) - Name of the input file append (boolean): True if user wants to keep older metadata, false otherwise.

« **verbose** (boolean) - True if debug output is required Returns: hdoutfile (HDF5): File with new metadata

hepfile - Read The Docs is getting populated!

Writing Data with hepfile

Before anything, we extract the data from the .csv files. (Since houses will not be its own group, it is

not completely necessary to extract houses_ID.)
people = np.loadtxt('sheetl.csv', unpack=True, dtype=str,
delimiter=",", comments = '$')[:, 1:]

vehicles = np.loadtxt('sheet2.csv', unpack=True, dtype=str,
delimiter: ", comments = '$')[:, 1:]

houses = np.loadtxt('sheet3.csv', unpack=True, dtype=str,
delimiter=",", comments = '$')[:, 1:]

people_ID = people[@][1:].astype(np.int32)
vehicles_ID = vehicles[@][1:].astype(np.int32)
houses_ID = houses[@][1:].astype(np.int32)

We create the dictionary where we will be storing our data, and then create the groups inside it. For
brevity, the counter for the buckets will be ID. It is fine to repeat the name of the counter because
hepfile will store the counter dataset as ' {groupname}/10" .

town = hepfile.initialize()
hepfile.create_group(town, 'people', counter = 'ID')
hepfile.create_group(town, 'vehicles', counter = 'ID')

hepfile

Search docs

Introduction

Funda

S Examples

Write to and read from file (generic
example)

Write to file (HEP example)
Read from file (HEP example)

Converting .csv files to hepfile

tributors
Any tech stack
e
[

Scale your engineering team with
pre-vetted remote developers. Hire
full-time devs with 14-day trial.

» Examples

Examples
Write to and read from file (generic example)

Write to file (HEP example)

import numpy as np
import sys
#import hepfile

For development
sys.path.append('../src/hepfile’)
import write as hepfile

data = hepfile.initialize()

hepfile.create_group(data, 'jet',counter='njet")
hepfile.create_dataset(data,['e’,'px', 'py"', 'pz'],group="jet " dtype=Ffloat)
hepfile.create_dataset(data,['algorithm'],group="jet",dtype=int)
hepfile.create_dataset(data,['words'],group='Jjet',dtype=str)

hepfile.create_group(data, 'muons',counter="nmuon')
hepfile.create_dataset(data,['e’,'px', 'py", 'pz'],group="muons',dtype=Float)

hepfile.create_dataset(data,['METpx', 'METpy'],dtype=float)
event = hepfile.create_single_bucket(data)
rando_words = ["hi", "bye", "ciao", "aloha"]
for i in range(0,10000):
#hepfile.clear_event(event)

njet = 17
event['jet/njet'] = njet

for n in range(njet):
event['jet/e'].append(np.random.random())
event['jet/px'].append(np.random.random())
event['jet/py"].append(np.random.random())
event['jet/pz'].append(np.random.random())

©) Edit on GitHub

Unit tests

e Unit tests ensure
functionality of the
program and use cases are
considered

e (ontinuous Integration
o Evaluates whether every
github commit keeps all unit
tests working
o Using Github Actions for
this

Check Python 3.6

ences

README.md

hepfile

code style black
pypi package [0.1.1 § python 3.6 | 3.7 | 3.8 | 3.9

C) Discussions Ask [gitter [join chat

() CI [passing

Installation

Local install and development

e C(Clone from Github
e https://github.com/mattbellis/hepfile

git clone https://github.com/mattbellis/hepfile
cd hepfile

flit install
-,

PyPI install

pip install hepfile
.

— In development

pip install hepfile[awkward]
e

https://github.com/mattbellis/hepfile

Julia

8000
6000
4000

2000

Because we chose a standard underlying file format
(HDF5), it makes it easier for other languages to
extract data from the file (assuming there are HDF5
tools written already)

JOSS

“The Journal of Open Source Software (JOSS) is an academic
journal (ISSN 2475-9066) with a formal peer review process that is
designed to improve the quality of the software submitted. Upon
acceptance into JOSS, a Crossref DOl is minted and we list your
paper on the JOSS website.”

“JOSS submissions must:

. , Apache 2.0
”a Be open source (i.e., have an OSl-approved license).

Have an obvious research application.
Be feature-complete (no half-baked solutions) and be
designed for maintainable extension (not one-off
modifications).

Vo Minor ‘utility' packages, including ‘thin' API cllent and
single-function packages are not acceptable.”

Working on this!

1

of 2

'. hepfile: A data and file ...

) 33.8% ¥ Q = = o x

J&SS

‘The Journal of Open Source Software

hepﬁle A data and file description for
g length data, impl ed in python and
HDF5

Matt Bellis’, Matt Dreyer’, and Willow Hagen®*

1 Sens Catege 2 Comell Uniersty 3 Camegie Meon University
Summary

High Encrgy Physics (HEP) datasets are challenging for many file formats becawse of the
inhomagensous nature of the dataset.
event may have 12 jets and no

bl

funclanaity without ROOT and making use of natve python taok. Te performance of
toal and its appication to non-HEP datmers il be presented

Statement of need

ROOT & frustrating (Brun et al, 2019).

Used for Particle Physics Playground (Bellis & Breimer, 2015)

Description

Grew out of bShep (Belis & Hagen, 2017),

Implementation

Ve uzed hpy (Collette, 2013)

Ve used nurpy (Harea et 3t 2020).

Availability and Installation

Saptiles cpmmircs mitvars mads vt unler the ApscheLicemse Verson 24. Do
it edac te

umentation can be found on Rexd TheDocs at
talled from PyPl 2

Pip install hepfile
o from itz GitHub repositary using £1¢.

o dmipin b argmoce angh do, imgemanted e yihen snd HOPS. burnd of 1

Hope to finish over winter break (Bellis)

https://opensource.org/licenses/category

Summary

My perspective on project:

Learned a lot about package installation

Learned about Continuous Integration and how useful it is

Wrote unit tests for full coverage of actual project

Wrote full documentation for functions

Clearer perspective on how code should be written for professional use

