
hepfile
Matt Dreyer (Cornell)

Matt Bellis (Siena College)

What is the problem we’re trying to solve?
● HEP data is heterogeneous and complicated!
● HEP-native example is particle physics

experiment
○ Sensors find muons, electrons, jets, etc.
○ Each particle has specific data attached to it (momentum,

charge, etc.)
○ Each event (collision) might have different numbers of

these particles

● Consider a census of a town, with data gathered
per household

○ Each household has people, cars, and place of residence
○ Each person has name, gender, and age
○ Each car has age and license plate
○ Each house has # of bedrooms and bathrooms

How to solve it
Current solutions: ROOT!

Problems: Monolithic

PyROOT helps but still tied to a file format that is bound
to the analysis toolkit

Makes it difficult to interface with non-HEP people (e.g.
broader computing community)

Alternative ROOT-file approaches:
uproot/awkward ecosystem

But this is still using the ROOT file format
(uproot).

Early attempt - h5hep

● Package originally called h5hep
(2017)

● Based on organizing HEP-like data
into HDF5 file format

○ Hierarchical Data Format 5
○ Open source
○ Datasets stored in group, stored in

groups, etc.

● Used on Particle Physics Playground
website for physics pedagogy

○ Data from CMS, BaBar, CLEO, and others
○ File format was originally zipped textfiles

Image credit :
https://www.neonscience.org/resources/learning-hub/tutorials/about-hdf5

https://www.neonscience.org/resources/learning-hub/tutorials/about-hdf5

Enter Matt D!

What we had

● Basics of hepfile
● Could be pip installed
● Basics of ReadThe Docs

What we wanted to have

● Add some functionality
○ Hold strings
○ Add attributes

● Get documentation better
● Use Henry Schreiner’s scikit-cookiecutter

to make the package more robust for
distribution

● Add functionality to work with awkward
● Make code more robust and

fault-tolerant
● Add necessary unit tests
● Get CI working
● Submit to JOSS! (Journal of Open-Source

Software)

https://github.com/scikit-hep/cookie

hepfile is born!
h5hep → hepfile (Summer 2021)

● Define a schema
○ How data is organized
○ What metadata needs to be stored to organize the data

● Define minimal useful API for flexibility
● Then, implement it in

○ Python
○ HDF5

● Hierarchical Data Format 5
○ Open source
○ Groups → datasets
○ Singletons
○ Metadata

● Define structure of two python dictionaries to
help with packing/unpacking data

○ Analogous to ROOT’s TTree/Leaf/Branch

Image credit :
https://www.neonscience.org/resources/learning-hub/tutorials/about-hdf5

https://www.neonscience.org/resources/learning-hub/tutorials/about-hdf5

What is hepfile?

● Data organized into events/buckets
● hepfile groups data of similar types

together in datasets
○ Keep bucket data using ‘counter’ field in dataset

● Pack takes buckets -> groups and datasets
● Unpack takes groups and datasets ->

buckets
○ Extracts specific bucket ‘i’ from datasets

Residence

People
Vehicles

Residence: House, 4, 2.5, 1500, 1955, 250000

Person 0: Ollie, Defelice, M, 54, 159, 75000. BS

Person 1: Marjorie,Williams,F,52,140,80000,MS

Person 2: Tommie,Thoren,NB,18,168,0,12

Person 3: David,Haley,F,14,150,0,9

Vehicle 0: Car,4,Gas,2005,25000

Vehicle 1: Car,5,Electric,2018,40000

Vehicle 2: Bike,1,Human,2015,500

Vehicle 3: Bike,1,Human,2015,500

Vehicle 4: Bike,1,Human,2015,500

Vehicle 5: Bike,1,Human,2015,500

Residence: House, 4, 2.5, 1500, 1955, 250000

Person 0: Ollie, Defelice, M, 54, 159, 75000. BS

Person 1: Marjorie,Williams,F,52,140,80000,MS

Person 2: Tommie,Thoren,NB,18,168,0,12

Person 3: David,Haley,F,14,150,0,9

Vehicle 0: Car,4,Gas,2005,25000

Vehicle 1: Car,5,Electric,2018,40000

Vehicle 2: Bike,1,Human,2015,500

Vehicle 3: Bike,1,Human,2015,500

Vehicle 4: Bike,1,Human,2015,500

Vehicle 5: Bike,1,Human,2015,500

pack

Veh
icle 3: B

ike,1,H
um

an,2015,500V
eh

ic
le

 0
: C

ar
,4

,G
as

,2
00

5,
25

00
0

Residence: H
ouse, 4, 2.5, 1500, 1955, 250000

Person 0: O
llie, Defelice, M

, 54, 159, 75000. BS

Pe
rs

on
 1

: M
ar

jo
rie

,W
ill

ia
m

s,
F,

52
,1

40
,8

00
00

,M
S

Person
 2: Tom

m
ie,Thoren,N

B
,18,168,0,12

Pe
rs

on
 3

: D
av

id
,H

al
ey

,F
,1

4,
15

0,
0,

9

Vehicle 1: Car,5,Electric,2018,40000

Ve
hi

cl
e

2:
 B

ik
e,

1,
H

um
an

,2
01

5,
50

0

Vehicle 4: Bike,1,H
um

an,2015,500

Ve
hi

cl
e

5:
 B

ik
e,

1,
Hum

an
,2

01
5,

50
0

pack

hepfile data storage

hepfile - usage

hepfile - Read The Docs is getting populated!

hepfile - Read The Docs is getting populated!

Unit tests

● Unit tests ensure
functionality of the
program and use cases are
considered

● Continuous Integration
○ Evaluates whether every

github commit keeps all unit
tests working

○ Using Github Actions for
this

Installation

Local install and development

● Clone from Github
● https://github.com/mattbellis/hepfile

PyPI install

pip install hepfile

pip install hepfile[awkward]

git clone https://github.com/mattbellis/hepfile
cd hepfile
flit install

In development

https://github.com/mattbellis/hepfile

Julia
using HDF5
using Plots

fname = "output.h5"
fid = h5open(fname, "r")

group_names = keys(fid)

for name in group_names
 println(name)
end

jet = read(fid,"jet")
jet_fields = keys(jet)

for field in jet_fields
 println(field)
end

e = jet["e"]

h = histogram(e,bins=25)

savefig("julia_plot_output.png")

gui()

Because we chose a standard underlying file format
(HDF5), it makes it easier for other languages to
extract data from the file (assuming there are HDF5
tools written already)

✔

JOSS
“The Journal of Open Source Software (JOSS) is an academic
journal (ISSN 2475-9066) with a formal peer review process that is
designed to improve the quality of the software submitted. Upon
acceptance into JOSS, a Crossref DOI is minted and we list your
paper on the JOSS website.”

“JOSS submissions must:

● Be open source (i.e., have an OSI-approved license).
● Have an obvious research application.
● Be feature-complete (no half-baked solutions) and be

designed for maintainable extension (not one-off
modifications).

● Minor 'utility' packages, including 'thin' API clients, and
single-function packages are not acceptable.”

✔

✔

✔

Apache 2.0

Working on this!

Hope to finish over winter break (Bellis)

https://opensource.org/licenses/category

Summary

My perspective on project:

● Learned a lot about package installation
● Learned about Continuous Integration and how useful it is
● Wrote unit tests for full coverage of actual project
● Wrote full documentation for functions
● Clearer perspective on how code should be written for professional use

