ggF Stage 1.2 Uncertainty scheme

Frank Tackmann, Matthias Kerner, Stephen Jones, Micheal Spira, Bernhard Mistlberger, Stephen Philip Jones Jonathan Langford, Ed Scott, Andrea Massironi Nicolas Berger, Robin Hayes, Hui-Chi Lin, Yun-Ju Lu, Roberto Di Nardo, Tae Park, Laurelle Veloce, Hongtao Yang, <u>Haider Abidi</u> Oct 5, 2021

Introduction

- STXS measurements are very common in the Higgs group + provide a convenient way to parametrize the uncertainties
 - STXS recommendations have two parts bin definition + associated uncertainty
- For Stage 1 scheme, had both ggF Stage 1.2 only has a preliminary systematic scheme
 - Tons of work put into the defining a new scheme ~ year long collaboration with people from ATLAS, CMS & theorists all involved
 - Collaborations across various LHC XS G!
- · Results documented @ Link, plan to release a document after getting community feedback

Uncertainty scheme

- Couple of key ingredients that need to be defined for such a scheme:
 - Common default MC ATLAS: PP8+NNLOPS & CMS: MG5+NNLOPS
 - Talks on harmonizing this even further for Run 3
 - List of NPs to parametrize the uncertainty
 - All stakeholders need to agree on this defines how to factorize the systematics
 - Many meetings within the LHC XS WG Finalized a common scheme @ Link
 - Overview for completeness Has been agreed to it by all parties
 - The method to evaluate systematics across bin boundaries final numbers
 - Different ways to evaluate the numbers
 - ~ year long collaboration on the methodology an evolution of the ST method settled as the main choice
 - Systematics impacting the acceptance shapes within an STXS bin
 - Largely agreed to leave this up to each analysis as there are too many possibilities
 - However, have a proposal on how to cover for this

Stage 1.2

Parameter Scheme

NP scheme

- Final decision from discussions documented @ Link
 - This is an evolution of the Stage 1 theory scheme with many common parts taken directly
- Overall, 18 NPs have been decided upon to parameterize the uncertainties

Overall yield and jet migration - 4 NPs

1 NP for overall fixed-order effects

1 NP for overall resummation effects

1 NP for 0-1 jet bin migration

1 NP for 1-2 jet bin migration

pTH migrations - 3 NPs

1 NP for p_T^H migration in 0 jet

2 NP for p_T^H migration at the 60/120 boundary Correlated across 1-2 jet bins

No change from Stage 1 for these NPs

NP scheme

m_{JJ} and p_T^{Hjj} migration - 5 NPs 4 NP for new m_{JJ} bins 1 NP for p_T^{Hjj} variations

New m_{JJ} bins added

p_THjj sys now impacts the full 2J phase space

NP scheme

High p_T^H migration - 6 NPs

1 NP for overall XS variation

3 NP for new p_TH bins

1 NP for p_THj/p_TH variations

1 NP for top mass scheme

Previously one NP for full region Now take dedicated state of art predictions and factorize out the various effects Uncertainty evaluation

Long range ST method

- Many ways to evaluate all involve varying the muR & muF scales and using the XS variations
- · Build upon the ST method to remove some of its limitations LR ST method collaboratively developed
 - Evaluate the yield variations inclusively and replace with better calculation if available
 - · Distribute the migration sys across all 'higher' bins
- Leads to double counting if we apply the same method in m_{JJ}>350 and m_{JJ}>700, double counting in the upper region
 - Introduce ρ scaling param to prevent this no clear way to estimate this correlation theoretically
 - Nominal choice of $\rho = 0.5$ chosen to ensure that total variation is \sim equal to the scale variations in that bin

Bin definitions

Long range ST method

Take the max scale variation inclusive region and apply as yield NP for all bins

$$\theta^{y}(j) \left\{ \delta^{y} = \max |\Delta_{\mu}| / \sigma \right\}$$
 (Replaced by state-of-the-art number when available),

$$\theta_{x_k}^{\text{mig}}(j) \begin{cases} 0 & : j < k \\ \rho \times \left(\delta_k^- \equiv -\max|\Delta_{\mu, \geq k+1}|/\sigma_k\right) & : j = k \\ \rho \times \left(\delta_k^+ \equiv +\max|\Delta_{\mu, \geq k+1}|/\sigma_{\geq k+1}\right) & : j \geq k+1 \end{cases}$$

Take the max scale variation in $\geq k+1$ region and apply as migration NP between k and $\geq k+1$ bins

Inclusive and Jet migrations

- No change from the Stage 1 scheme
- Use BLPTW method from the YR4
 - · These end up being the 'yield' uncertainties when we evaluate other uncertainties

Uncertainty		jet bin	
[%]	$\mid \sigma_0 \mid$	σ_1	$\sigma_{\geq 2}$
$ heta_{m{\mu}}$	3.8	5.2	7.9
θ_{res}	0.1	4.5	7.9
$\theta_{0/1}$	-4.2	7.9	3.9
$\theta_{1/2}$	_	-6.8	16.1
Total	5.6	12.5	19.9

Low ptH region - 0 jet topology

- Scheme developed a few years ago approved as part of the Stage 1.1 scheme <u>Link</u>
 - Envelop of HNNLO NNLOPS/muR/muF scale taken as the sys
- No application of LR method dominant effects are from low p_T resummation + only one bin boundary
 - · Care taken to ensure that uncertainty in the region are inline with calculations

Uncertainty	p_{T}^{H} [GeV] region in 0j			
[%]	$\sigma_{=0j}$	$\sigma_{<10}$	$\sigma_{\geq 10}$	
$\theta_{p_{\mathrm{T}}^{H}=10}$		11.2	-3.6	

Low pth region - 1/2 jet topology

- Similar as 0 jet but dominant uncertainty source expected to be covered by muR/muF/HNNLO variations
- Following a similar procedure as Stage 1 scheme but applying LR ST method in the middle
 - Use the largest scale variation to define the input
- Also checked the scale variations in m_{ij} bins consistent within the statistical error
 - Assume for now, p_T^H uncertainty is independent of m_{jj}

Low ptH region - 1/2 jet topology

- Derive the results in ≥ 1 region
 - Since p_TH shape changes in jet regions, apply a different smoothing function to distribute the XS impact evenly across
- Only place where smoothing is applied p_TH is typically correlated with acceptance effects due to analysis selection
 - Smoothing allows to get the impact of these acceptance effects
 - Non-trivial to parameterize other variables once p_T^H has been tackle in the next iteration of the scheme

Uncertainty [%]	$\parallel \ \parallel \ \sigma_{\geq 1}$		$\sigma_{[60,120)}$		e uncertain	D.3 ATLAS Generator Level D.2 Powheg+Pythia8 ggF 1-jet, ρ = 0.5 0.1	— nominal —	O.3 ATLAS Generator Level 0.2 Powheg+Pythia8 ggF ≥2-jet, ρ = 0.5 0.1 O.1	—nominal — —pTH60 — —pTH120 —
$ heta_y \\ heta_{p_{\mathrm{T}}^H=60} \\ heta_{p_{\mathrm{T}}^H=120} heta_y$	13.1	13.1 -8.1	13.1 +7.6 -2.9	13.1 +7.6 +10.3		0.1	- Q	-0.1	
Total	13.1	15.4	15.5	18.3		0.2 	140 160 180 200	-0.2 -0.3 0 0 0 0 0 0 0 0 0 0	120 140 160 180 20
							p _T ^H [GeV]		p _T ^H [GeV

2 Jet region - mjj

- · Uncertainties for m_{ij} are a simple application of the LR method
 - Scale variation from FxFx used as it is NLO @ 2j
- Cross-checked results with NNLOPS, MG5 H+2J and Hjj MiNLO
- Ensured that migration uncertainties cancel out when applied to NNLOPS

$H + 0, 1, 2j$ MG5_AMC@NLO (FxFx)							
Uncertainty		m_{jj} [GeV] region					
[%]	$\mid\mid \sigma_{\geq 2j}$	$\sigma_{<350}$	$\sigma_{[350,700)}$	$\sigma_{[700,1000)}$	$\sigma_{[1000,1500)}$	$\sigma_{\geq 1500}$	
$ heta_{ exttt{y}}$	23.0	23.0	23.0	23.0	23.0	23.0	
$\theta_{m_{jj}=350}$		-2.9	+11.8	+11.8	+11.8	+11.8	
$\theta_{m_{jj}=700}$			-5.7	+12.4	+12.4	+12.4	
$\theta_{m_{j,j}=1000}$				-11.1	+12.6	+12.6	
$\theta_{m_{jj}=1500}$					-6.8	+13.0	
Total	23.0	23.2	26.5	30.7	32.0	33.9	

2 Jet region - ptHjj

- p_T^{Hjj} is an indirect probe for N_{jet} however, there is significant leakage at the $p_T^{Hjj} = 25$ GeV boundary
 - Consistently found the same behaviour across generators
 - Need a better probe for $N_{jet} = 2 \leftrightarrow N_{jet} \ge 3$ migrations
- Leads to an increase in the apparent systematic in the lower bin

2 Jet region - ptHjj

- Due to NLO (FxFx) vs LO (NNLOPS) shape differences, the impact in the upper bin increased to O(30%) prevent a overall XS impact
- Cross-checked results with NNLOPS, MG5 H+2J and Hjj MiNLO
- ρ set to 1 as there is only one bin

$\parallel H+0,1,2j \text{ MG5_AMC@NLO (FxFx)}$						
Uncertainty	p_{T}^{Hjj} [GeV] region					
[%]	$\parallel \sigma_{\geq 2j}$	$\sigma_{<25}$	$\sigma_{\geq 25}$			
$ heta^y$	$\parallel 23.0$	23.0	23.0			
θ^{25}		-33.7	+30.0			
Total	23.0	40.8	37.8			

Increased from 23.8% to 30% to account for relative XS difference in NNLOPS wrt MG5 FxFx

High ptH region - Scale variation

- Significant improvements to the uncertainty scheme in $p_T^H > 200$ GeV region
- Dedicated theoretical calculations and associated QCD scale uncertainty 1802.00349
- Matthias Kerner & Stephen Jones extended and provided results in the needed binning
 - Ensured that these results are consistent with the NNLOPS results
- Very recently found that the top mass effect was overestimated numbers will be updated ASAP

High ptH region - Scale variation

- Afterwards a normal application of the LR method
- In this case, yield migration is kept as a separate NP
 - BLPTW is not expected to cover this region

		NLO_SM						
Uncertainty		p_{T}^{H} [GeV] region						
[%]	$\sigma_{\geq 200}$	$\sigma_{[200,300)}$	$\sigma_{[300,450)}$	$\sigma_{[450,650)}$	$\sigma_{\geq 650}$			
$ heta_{high-p_{\scriptscriptstyle \mathrm{T}}^H}$	22.1	22.1	22.1	22.1	22.1			
$ heta_{high-p_{\mathrm{T}}^{H}} \ heta_{p_{\mathrm{T}}^{H}=300}$	_	-2.8	10.4	10.4	10.4			
$\theta_{p_{\mathrm{T}}^{H}=450}^{H}$	_	_	-1.7	10.3	10.3			
$\theta_{p_{\mathrm{T}}^{H}=650}^{P}$	_	_	_	-1.4	10.4			
Total	22.1	22.2	24.4	26.5	28.4			

High pth region - pth/pth

- p¬Hj/p¬H to account for nJet migration similar to p¬Hjj
 - Checked to ensure cut at 0.15 is a good probe for this effect
- ρ set to 1 as there is only one bin
- Results cross-checked with MG FxFx sample

	NNLOPS					
Uncertainty						
[%]	$\sigma_{\geq 0}$	$\sigma_{[0,0.15)}$	$\sigma_{\geq 0.15}$			
$\theta_{\mathbf{y}}$	20.7	20.7	20.7			
$\theta_{p_{\mathrm{T}}^{Hj}/p_{\mathrm{T}}^{H}=0.15}$	-	-51.0	18.1			
Total	20.7	55.0	27.4			

pTHj/pTH variations are not pTH dependant

High ptH region - top mass scheme

- Various calculations show that top mass scheme can lead to different prediction in the high p_TH region source of uncertainty
- · Calculations with MSbar and pole mass only available at LO Micheal Spira
- Calculations of other processes show ~ 2x reduction in the difference at NLO
 - Take half of the variation for Higgs p_TH as a systematic variation

Acceptance effects + uncovered variables

Acceptance effect + other variables

- Almost all uncertainty numbers are applied flat in a STXS bin
 - If analysis selection shapes the acceptance or ML algorithm uses the variable, the uncertainty will factorize
 - Many other QCD sensitive variables not covered by this scheme
 - This leads to an underestimation
- Way around it provide one scale variation (e.g. muF = muR = 0.5) as part of the implementation of the scheme
- To avoid 'significant' double counting, normalize scale variation in STXS bin to remove overall XS
 - To decide: if this variation should be one overall NP or one NP per bin or somewhere in between
- This proposal has some still has double counting
 - If NP is pulled/constrained/ranked highly ask analysis to do detailed checks & make decisions on an case-by-case level
 - Leave this up to the collaboration to define how to implement this

Conclusion

- Significant work has been invested in defining the uncertainty scheme for the ggF Stage 1.2 STXS scheme
 - Collaborative effort between ATLAS, CMS and theorists!
- Complete version of both the nuisance parameter scheme and the associated numbers available!
 - · Results documented @ Link which can be implemented by the analyses
- Plan to document these results in a note in the future!
- Potential improvements to the scheme in the future
 - Correlated effects across multiple dimensions
 - Smooth parameterization across variables
 - Any other feedback from the community!

Backup

Evaluating the uncertainty

- Many ways all involve varying the renormalization & factorization scale and using the XS variations in some NP scheme
- Our current go-to is the ST method One NP for overall yield variation and other NP for migration between categories
 - Removes the accidental cancellation of scale variations

Bin definitions ST method

Take the max scale variation in ≥ k region and apply as yield NP in k bin

Take the max scale variation in \geq k+1 region and apply as migration NP in k and k+1 bin

- But this method breaks down in the case of many or small bin width unphysical blow up of uncertainty if XS is small
- For continuous variables, like pTH, it makes no sense that migration will be only between two neighbouring bins

Long range ST method

	Kinematic observable x					
Nuisance parameter	$0 \le x \le a$	$a \le x \le b$	$ x \ge b$			
$egin{aligned} heta^{y} \ heta^{ ext{mig}}_{a} \ heta^{ ext{mig}}_{b} \end{aligned}$	$+\delta_y$ $ ho\delta_a^-$	$+\delta_y$ $ ho \delta_a^+$ $ ho \delta_b^-$	$+\delta_y \ ho \delta_a^+ \ ho \delta_b^+$			

 ρ chosen to remove the overlap between x > a and x > b uncertainty values

 θ^y as the max scale variation in the inclusive x region - $\delta_y = \max(\Delta_\mu)/\sigma$

 θ_a^{mig} as the max scale variation in the x > a region. First bin as the negative of this value as the uncertainty

$$\delta_a^+ = \max(\Delta_{x>a})/\sigma_{x>a}$$
$$\delta_a^- = -\max(\Delta_{x>a})/\sigma_{x$$

 θ_b^{mig} as the max scale variation in the x > b region. Second bin as the negative of this value, with no sys applied to the first bin $\delta_b^+ = \max(\Delta_{x>b})/\sigma_{x>b}$ $\delta_b^- = -\max(\Delta_{x>b})/\sigma_{a< x< b}$

Samples used for theory sys

Generated Samples							
Name	Description	Generator	Shower	PDF	Variations	Other Notes	
POWHEG NNLOPS	H+0j@NNLO	Powheg	Рутніа 8, AZNLO tune	PDF4LHC15_nlo_30_pdfas	(μ_R, μ_F) variations (7-point NLO, 3-point NNLO)	NNLOPS reweighting Rescaled for quark mass effects	
MiNLO HJ	H+1j@NLO	Powheg	Рутніа 8, AZNLO tune	PDF4LHC15_nlo_30_pdfas	7-point (μ_R , μ_F) variations	Rescaled for quark mass effects bornktmin=200	
MıNLO HJJ	H+2j@NLO	Powheg	Рутніа 8, AZNLO tune	PDF4LHC15_nlo_30_pdfas	7-point (μ_R , μ_F) variations	Rescaled quark mass effects	
H+1j MG5_AMC@NLO	H+1j@NLO	MG5_AMC@NLO	Рутніа 8, AZNLO tune	NNPDF30_nlo_as_0118	7-point (μ_R , μ_F) variations	HC_NLO_X0 -heft model $m_{top} = \inf, m_b = 0$	
H+0,1,2j MG5_AMC@NLO (FxFx)	H+0,1,2j@NLO	MG5_aMC@NLO	Рутніа 8, AZNLO tune	NNPDF30_nlo_as_0118	7-point (μ_R , μ_F) variations	FxFx merging merging scale = 30 GeV HC_NLO_X0-heft model $m_{top} = \inf, m_b = 0$	
			Calcul	lations			
Name	Description	Re	ference	PDF	Variations	Other Notes	
NLO_SM	H+1j@NLO with finite top mass	arXiv:1802.00349		PDF4LHC15_nnlo_mc	7-point variations of (μ_R, μ_F) around $E_T = \sqrt{m_H^2 + p_{T,H}^2}$	$mt = 173.05 \text{ GeV}$ $\geq 1 \text{ jet with } p_T > 30 \text{ GeV}$	
Pole mass (and other top mass variations)	H+1j@LO with finite top mass	arXiv:2003.01700, arXiv:1811.05692 arXiv:2003.03227, arXiv:2008.11626		-	\bar{MS} mass variations mt(mt), mt($E_{\rm T}/2$), mt($E_{\rm T}$), mt($2E_{\rm T}$), with $E_{\rm T} = \sqrt{m_H^2 + p_{{\rm T},H}^2}$		