

UPDATE ON COLLIMATION STUDIES FOR THE FCC-EE

A. Abramov, M. Boscolo, R. Bruce, M. Hofer, M. Moudgalya

Collimation strategy

- Motivation for study of a β-tron collimation system in FCC-ee and study plan presented in the 31st FCC-ee MDI meeting
 - Protection of sensitive machine elements
 e.g., SC final focus doublet from irregular losses
 - Locate collimation insertion in one of the secondary straight section
 - Two stage system with primary collimator as the aperture bottleneck in the ring

T. Ishibashi, <u>SuperKEKB collimation system</u>, FCC Week 2021

Workplan

- Establish <u>aperture model for the whole ring</u> and find minimum aperture to protect
 - For most of the ring, SKEKB type beampipe with r = 35mm, but excluding winglets
 - Model around IP updated to include new central chamber diameter and SR mask after QC1

Plot adapted from R. Kersevan, "Vacuum system", at FCC November Week 2020

Figure 1: IR layout with 10 mm radius of the central pipe.

From <u>arXiv:2105.09698</u>

Workplan

- Establish <u>aperture model for the whole ring</u> and find minimum aperture to protect
 - For most of the ring, SKEKB type beampipe with r = 35mm, but excluding winglets
 - Model around IP updated to include new central chamber diameter and SR mask after QC1
 - More detailed model of detector region available?
 - Taper of beampipe towards QC2
 - SR collimators

Beam-stay-clear around the IP in $t\bar{t}$ -lattice

Beam-stay-clear in $t\bar{t}$ -lattice

Workplan II

- Establish <u>aperture model for the whole ring</u> and find minimum aperture to protect
- Layout and optics for collimation section under development
 - Separate β-tron and momentum collimation section or combined system?
 - Different layout depending on number of IP
 - Integrate into new layout with longer straight sections $(1.4km \rightarrow 2.1km)$

 $t\bar{t}$ -lattice (182.5 GeV)

Workplan III

- Establish <u>aperture model for the whole ring</u> and find minimum aperture to protect
- Layout and optics for collimation section under development
- Setup of tracking codes to simulate particle losses around the ring in progress
- Estimates for acceptable losses for different systems required to determine efficacy of collimation system
 - Superconducting quadrupoles, detectors, RF-cavities, ...
 - Estimates already available for some systems?
 Take from SKEKB?

Preliminary loss maps w/o SR radiation

Summary

- Collimation studies for FCC-ee well under way
 - Aperture model completed and used to define collimator gaps and for tracking studies
 - First set of optics for a collimation insertion matched
- MDI related aspects:
 - Detailed beampipe transition available?
 - Tolerable losses for components

Thanks for your attention!