
Porting a GPU-enabled HLT 
workload to HEP-WORKLOADS

Andrea Sciabà

1



Integration process

• Received from Tommaso B. a script that runs a GPU-enabled CMS workload
• Set up the shell environment
• Retrieve and compile the source code
• Run cmsRun

• The workload is simply an example of an HLT job on MC ttbar events and 
has no pretense of being “the” CMS GPU benchmark!
• It can run with and without a GPU
• It requires an input file of 100 events, but it can run over them as many times as 

desired

• The conversion into an orchestrator and a CMSSW configuration script was 
very easy
• Performed by analogy with cms-reco-run3, conceptually very similar

2



Building the image

• No issues, it worked at the second attempt (the first failed because of 
“no space on device”)
• https://gitlab.cern.ch/hep-benchmarks/hep-workloads/-

/tree/master/cms/hlt

• No GPU-specific metrics in the results JSON for now
• The score is still simply the event throughput

3

https://gitlab.cern.ch/hep-benchmarks/hep-workloads/-/tree/master/cms/hlt


GPU score and metrics

• We need to have some metrics to quantify the impact and the 
utilization of the GPU. Some candidates:
• num_GPUs: the number of GPUs visible to cmsRun

• speedup: the ratio between the throughput obtained when using also the 
GPU and the one obtained without using the GPU
• It requires to run cmsRun twice in the orchestrator

• The main score should be the GPU+CPU throughput (the CPU-only one is used only to 
calculate the speedup)

• GPU utilization (%) obtained from nvidia-smi
• PrMon can be used for this purpose

4



Caveats

• When the workload is run in > 1 concurrent copies, GPU sharing 
becomes an issue to be considered

• By default, sharing will be done on a round-robin basis, which is very 
inefficient

• Need to run Nvidia MPS (Multi-Process Service) to allow concurrent 
processes to use the GPU at the same time
• It can be launched even by a non-privileged user
• Need to understand where it’s best to launch it (it should be probably outside 

of any specific workload assuming that there may be several different GPU 
workloads running)

• Or, assume that it is running on the host being benchmarked – probably 
better

5



Known issues

• The workload was tested to be able to gracefully use only the CPU if 
there is physically no GPU in the system

• However, if docker run is not run with the --gpu all option, it aborts 
because of missing Nvidia libraries
• Not what I would expect – to be understood

• The GPU utilization measured by nvidia-smi is extremely low (~1%)
• But a new workload I just received shows a healthier 94%, so it’s not a bug

• Prmon reports zero values for the GPU metrics
• Investigating – maybe there is a problem with running it in a container?

• UPDATE: it works if I do docker run –pid=host …

6



Next steps

• Merge the code that implements the num_GPUs and speedup 
metrics

• Move to the newer workload (which uses the GPU at an 
unrealistically high level but it’s good for a prototype)

• Release a public Docker image

• Add the measurement of the GPU utilization via prmon

• Add the option to run MPS?

7



Conclusion

• The goal was to prepare the machinery to run a GPU-enabled CMS 
workload in HEPSCORE

• The workload that will be eventually be used for benchmarking is still 
likely several months away and it depends on what CMS chooses to 
be a realistic benchmark

8


