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Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.
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Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.
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Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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Abstract: Experiments at a future e+e� collider will be able to search for new par-
ticles with masses below the nominal centre-of-mass energy by analyzing collisions with
initial-state radiation (radiative return). We show that machine learning methods based on
semisupervised and weakly supervised learning can achieve model-independent sensitivity
to the production of new particles in radiative return events. In addition to a first applica-
tion of these methods in e+e� collisions, our study is the first to combine weak supervision
with variable-dimensional information by deploying a deep sets neural network architec-
ture. We have also investigated some of the experimental aspects of anomaly detection in
radiative return events and discuss these in the context of future detector design.
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We have performed thousands of hypothesis tests & have no 
significant evidence for physics beyond the Standard Model

Three 
possibilities 

Dark matter

Dark energy

Hierarchy problem
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Strong CP
Flavor puzzles

3

Theoretical and experimental questions motivate a deep 
exploration of the fundamental structure of nature
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Theoretical and experimental questions motivate a deep 
exploration of the fundamental structure of nature

This is what motivated this work!

(3) We are not looking in the right place

We have performed thousands of hypothesis tests & have no 
significant evidence for physics beyond the Standard Model

(Brief) Motivation
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Theoretical and experimental questions motivate a deep 
exploration of the fundamental structure of nature

This is what motivated this work!

(3) We are not looking in the right place

We have performed thousands of hypothesis tests & have no 
significant evidence for physics beyond the Standard Model

(Brief) Motivation

J. Kim, K. Kong, BN, and D. Whiteson, 1907.06659

There are also many uncovered 
scenarios - we cannot possibly do a 
search for every possible topology!
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signal model independence

Some searches
(train data versus 

background 
simulation)

Some 
searches

(train signal 
versus data)

autoencoders

CWoLa

ANODE

Most 
searches
(train with 

simulations)

LDA

SALAD

new ideas! There are many new 
ideas that make use 
of modern machine 

learning

N.B. this is just for signal sensitivity 
- there is also model dependence 

for determining the background

The goal is to learn 
directly from data, 

injecting as little bias 
as possible

Adapted from BN and D. Shih, 2001.04990

UCluster

Tag N’ Train

QUAK

GIS
BuHuLaSpa

Factorized Topic 
Modeling

GAN-AE

VRNN



11A method testing ground: the LHCO
2101.08320https://lhco2020.github.io/homepage/



12The Challenge

We provided a list of particle for each event (700 
particles with the 3-vector of each particle)

1 dataset for R&D with labeled 
signal and background

3 black boxes with unlabeled data

The particle-level + detector-level 
simulation for background in the 

black boxes was modified for each 
dataset (think Pythia/Herwig, etc.)

Actually, all of the parameters are now public on Zenodo



13The dataset

?1

W

?2

?3

Dijet final state (allow for data-driven 
background + complex final state). 

R&D signal



14Solutions

BB = black box; (i) = blinded, (ii) = unblinded

I don’t have time to cover all of them - please see the 
paper for details!  I’ll just highlight some general ideas.



15Solutions

Supervision refers to the type of label 
information provided to the ML during training.

Unsupervised = no labels 
Weakly-supervised = noisy labels 
Semi-supervised = partial labels 

Supervised = full label information

*N.B. Not everyone agrees on the boundary 
between semi-supervised and weakly supervised.

These categories are not exact 
and the boundaries are not rigid!



16Solutions: Unsupervised

Typically, the goal of these methods is to look 
for events with low p(background)

Unsupervised = no labels

M. Farina, Y. Nakai, D. Shih, 1808.08992; T. Heimel, G. 
Kasieczka, T. Plehn, J. Thompson, 1808.08979; + many more

One strategy (autoencoders) is to try to 
compress events and then uncompress 

them.  When x = uncompres(compress(x)), 
then x probably has low p(x).



17Solutions: Weakly-supervised

Typically, the goal of these methods is to look for events with 
high p(possibly signal-enriched)/p(possibly signal-depleted)

Weakly-supervised = noisy labels

e.g. Classification Without Labels 
(CWoLa), events in a signal region are 

labeled “signal” and events in a sideband 
are labeled “background”.  These labels 
are “noisy” but a classifier trained with 

them can detect the presence of a signal.

E. Metodiev, BN, J. Thaler, 1708.02949; J. Collins, K. Howe, BN, 1805.02664
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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classifier + be careful to not pay a big trails factor
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19Solutions: Semi-supervised

Typically, these methods use some signal 
simulations to build signal sensitivity

Semi-supervised = partial labels

S. Park, D. Rankin, S.-M. Udrescu, M. Yunus, P. Harris, 2011.03550

Quasi Anomalous 
Knowledge (QUAK)(We did not give bonus points 

for the best acronyms !)



20CWoLa Hunting on the LHCO
Black Box 1 (BB1)

J. Collins and BN, 2101.08320
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J. Collins and BN, 2101.08320



ATLAS Collaboration 
PRL 125 (2020) 131801, 2005.02983

First round, keep it simple: feature space is 2D (jet masses)
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Deep learning + weak 
supervision + anomaly 

detection leading to 
real physics output!
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24CWoLa hunting at e+e-?
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Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.
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Abstract: Experiments at a future e+e� collider will be able to search for new par-
ticles with masses below the nominal centre-of-mass energy by analyzing collisions with
initial-state radiation (radiative return). We show that machine learning methods based on
semisupervised and weakly supervised learning can achieve model-independent sensitivity
to the production of new particles in radiative return events. In addition to a first applica-
tion of these methods in e+e� collisions, our study is the first to combine weak supervision
with variable-dimensional information by deploying a deep sets neural network architec-
ture. We have also investigated some of the experimental aspects of anomaly detection in
radiative return events and discuss these in the context of future detector design.
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Figure 1: Feynman diagrams of the background (a) and signal (b) processes considered.

3 Simulated Samples & Processing

We consider e+e� collisions at a nominal centre-of-mass (CoM) energy of 1 TeV that pro-
duce final states with jets and a photon from initial-state-radiation (ISR). The signal process
studied is the production of a BSM heavy scalar X that decays into a pair of scalars a, each
decaying to two b-quarks, in association with a ISR photon: e+e� ! X ! aa ! bb̄bb̄�. Two
sets of values of the invariant masses of particles X and a are examined: mX ,ma = 350, 40 GeV
and 700, 100 GeV. The background originates from di-jet production in association with a
ISR photon, with a cross-section that is dominated by the Drell-Yan �⇤/Z production and
extends to close to the nominal 1 TeV CoM. Feynman diagrams of the signal and background
processes are shown in Figure 1.

The generation of background and signal events is done by MadGraph5_aMC@NLO

X.X.X [4] with parton showering and hadronization performed by Pythia8 [5]. A minimum
ET threshold of 10 GeV is placed on the photon, with a pseudo-rapidity that extends to
±5.

The detector simulation is parameterized with Delphes X.X, using a card for a generic
ILC detector []. A particle flow algorithm is used to combine tracking and calorimeter
information and define the final reconstructed objects. Photons are built from energy
deposits in the electromagnetic calorimeter that are not matched to any track, using the
central and forward calorimeter systems with pseudo-rapidity coverages of |⌘| < 3.0 and
3.0 < |⌘| < 4.0, respectively. Jets are built from particle flow objects (except isolated muons,
electrons and photons) measured in the tracker (with an acceptance of up to |⌘| < 3.0,
electromagnetic and hadronic calorimeters (central system up to 2.8 and forward system
up to 3.8 in absolute pseudo-rapidity). The jet clustering is performed with the anti-kt [6]
algorithm with a radius R = 1.0 implemented in FastJet [7].

Events are selected for analysis if they contain at least two jets with a minimum pT of
X GeV. An effective CoM energy can be calculated for all events based on the The effective
CoM energy

p
ŝ is shown in Figure 2 for all generated samples, calculated with truth-level

quantities. Distributions of the photon transverse energy and pseudo-rapidity are shown
on Figure 3 for the background and signal processes considered.

The unpolarized cross-section for the background process is of the order of 1 pb, cor-
responding to approximately X events above the Z peak. This amount of statistics would
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quantities. Distributions of the photon transverse energy and pseudo-rapidity are shown
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The unpolarized cross-section for the background process is of the order of 1 pb, cor-
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MadGraph + Pythia + ILD Delphes | | < 4η
Deep Sets Classifier as EnergyFlow/Particle Flow Networks*

*P. Komiske, E. Metodiev, J. Thaler, 1810.05165, https://energyflow.network

4-vectors for all jets + 5 n-subjettiness# variables     
+ 4 bit b-tagging discriminant

#J. Thaler, K. Van Tilburg, 1108.2701

Scale all energies by the HT
N.B. high-and 

variable-dimensional!

https://github.com/iLCSoft/ILCDelphes
https://energyflow.network
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Figure 3: Distributions at detector-level of the photon transverse energy and pseudo-
rapidity for the background and two signal processes. A minimum cut of 200 GeV is placed
on the truth

p
ŝ.

we have used this particular setup to provide concrete conclusions, the methodology and
qualitative conclusions apply more generally to any future e+e� collider.

The training for a given
p
ŝ distribution is run seven times, each with a different amount

of signal events. The number of signal events considered are calculated in terms of the signal
sensitivity in the signal region (�), specifically � = 0, 0.5, 1, 2, 3, 5 and 1 (100% signal).
The background events are the same in each training, while the signal events added to the
pseudodata are randomly selected. Event yields used in training for the background and
signal samples in each region can be found in Table 2, for all three

p
ŝ measures.

Signal region [GeV] Sideband region [GeV]
mX , ma= 350 GeV, 40 GeV [325, 375) [275, 325) [ [375, 425)
mX , ma= 700 GeV, 100 GeV [675, 725) [625, 675) [ [725, 775)

Table 1: Table of selections on
p
ŝ that define the analysis signal and sideband regions.
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Figure 4: CWoLa-trained ROC curves for background in the sideband vs. background in
the signal region, for the mX = 350 GeV signal region on the left and the mX = 700 GeV
signal region on the right.

b-tagging efficiency (50%, 70%, 90%, 100%). Plots of the input variables for leading and
sub-leading jets in signal and background processes are shown in Appendix A.

The neural networks are trained using keras [95] with the tensorflow [96] backend.
The categorical cross-entropy loss function was minimized, using the Adam optimizer [97]
with an initial learning rate of 0.0001. Starting with higher (up to 0.01) and lower (down
to 10�5) learning rates was found to be suboptimal. Adagrad [98] and RMSProp [99]
optimizers were also studied, with no significant impact on the performance. The PFN was
trained for 30 epochs with a batch size of 100. A longer training time of 100 epochs was
also considered and did not strongly affect the final performance.

In the weakly supervised scenario where training utilizes events from different bins ofp
ŝ, care must be taken to ensure that the network output is agnostic to the

p
ŝ of the

events. Therefore, a per-event normalization procedure is implemented to mitigate thep
ŝ correlation. Each jet’s ⌘ and � is centered on the average value for all jets in the event,

and its pT is scaled by the sum of jet transverse momentum in the event. The efficacy
of the normalization procedure is verified by training the network to identify background
events in the signal region from background events in the sideband. Since these events
should only vary in their

p
ŝ values, the normalization procedure can be deemed functional

if the classifier is unable to discern these two classes of background events. Figure 4 shows
the result of this training, confirming that the chosen normalization is sufficiently able to
remove significant correlations of learned information with

p
ŝ.

Considerable variance in performance was observed across models with identical train-
ing scenarios. An ensemble procedure was developed to mitigate the effect of these fluctua-
tions. Each training result presented here represents the average of 50 trained models, each
with a random signal injection. Models are combined by quantile scaling the predicted val-
ues on the test set and averaging the results for all 50 models. The results should therefore
be interpreted as the expected/average sensitivity.
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Figure 6: Weakly supervised training results in the form of ROC (left) and SIC (right)
curves for two signals, mX = 350 GeV (top) and mX = 700 GeV (bottom) vs. background.

5 Future Detector Considerations

To extrapolate these results to a search in real collision data, the same method is applied
using regions defined with a measured

p
ŝ instead of one computed with truth-level quan-

tities. Two different methods for measuring the total available energy are considered. One
assumes that the ISR photon is captured by the detector, and therefore uses the measure-
ment of its energy subtracted from the incoming electron-positron

p
ŝ as a proxy for the

amount of energy available in the collision. This is referred to as the photon-measuredp
ŝ. The second is the hadron-measured

p
ŝ, which covers the scenario where the photon

is lost and the collision CoM must be obtained through measurements of the final-state
hadrons. Note that the highest pT photon is always used for these calculations. In the
photon-measured case, if the true ISR photon is out of acceptance, the predicted

p
ŝ will be

significantly different from the true one. In the hadron-measured case, the selected photon
is excluded from the calculation of

p
ŝ.

Figure 8 shows distributions of these two
p
ŝ measurements for the background and both

signal hypotheses. The incorporation of detector information gives each resonance a non-
negligible width due to smearing introduced by detector resolution. As a result, the signal-
to-noise in the signal region is lower. As seen in Table 2, this width can also create some
signal contamination in the sideband. Both of these effects make the discrimination task
more challenging. In the photon-measured case, the signal and Z peaks are approximately
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Figure 8: Distributions of the measured collision
p
ŝ when the outgoing photon is captured

and subtracted from the initial collision energy (left), and computed using only the final
state hadrons in the event (right)

Figure 9: Weakly supervised PFN training results using photon-measured
p
ŝ, in the form

of ROC (left) and SIC (right) curves for mX = 350 GeV (top) and mX = 700 GeV (bottom)
vs. background.

scan
p
ŝ for new resonant particles decaying to hadrons, while remaining agnostic to the

mass scale of new physics. The analysis methodology uses different regions of
p
ŝ to obtain

training regions with varying signal-to-background ratios, allowing for the construction of
a classifier that uses noisy labels for sensitivity to signal characteristics without relying on
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Figure 2: Effective center-of-mass energy calculated from truth-level quantities for the
background and two signal processes considered.

samples and based on truth-level quantities. Distributions of the photon transverse energy
and pseudo-rapidity at detector-level are shown on Fig. 3 for the background and signal
processes considered. For detector-level

p
ŝ studies, we select the highest pT photon.

3 Methodology

A ML-assisted bump hunt is performed by scanning three different
p
ŝ measures in e+e� col-

lisions: truth
p
ŝ, where the truth-level energy of the photon is subtracted from the incoming

electron and positron beam energies; the �-measured
p
ŝ, relying on the measured energy

of the detected photon; and the hadron-measured
p
ŝ, computed using all the measured

particles (in this case hadrons) with the exception of the photon. The truth-level analysis
is presented as nominal, representing the ideal performance of the method without con-
sideration of detector effects in the construction of the signal regions (detector effects are
always included for the classification). Further description of the measured

p
ŝ quantities

and their impact on performance is given in Section 5.
Signal regions are defined for both mass points as windows of 50 GeV centered at the

resonance mass mX . The sideband region then extends 50 GeV in both directions, excluding
the signal region. A summary of these definitions can be found in Table 1. The training
is performed with a fixed luminosity over events from each of the three

p
ŝ measures.

The luminosity is determined from a normalization chosen to give 25000 events in the
mX = 350 GeV sideband region.

In particular, the unpolarized cross-section for the background process in our fiducial
region is about 1 pb (as reported by MadGraph5_aMC@NLO). This amount of statis-
tics would correspond to a collected luminosity of approximately 6.5 ab-1, well within the
integrated luminosity estimates of the operating scenarios for colliders at 1 TeV [91]. While
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Deep learning-based 
anomaly detection is a 
promising avenue to 

broaden the energy frontier 
physics portfolio

This methodology can be extended beyond dijets to 
radiative return in e+e-; need to start thinking now about 

implications for detector, software, and computing! 
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I did not cover every proposal 
- see the Living Review for more!

Can we extend density estimation techniques 
like CATHODE to high dimensions?

https://iml-wg.github.io/HEPML-LivingReview/
https://arxiv.org/abs/2109.00546
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