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ABSTRACT: Experiments at a future eTe™ collider will be able to search for new par-
ticles with masses below the nominal centre-of-mass energy by analyzing collisions with
initial-state radiation (radiative return). We show that machine learning methods based on
semisupervised and weakly supervised learning can achieve model-independent sensitivity
to the production of new particles in radiative return events. In addition to a first applica-
tion of these methods in eTe™ collisions, our study is the first to combine weak supervision
with variable-dimensional information by deploying a deep sets neural network architec-
ture. We have also investigated some of the experimental aspects of anomaly detection in
radiative return events and discuss these in the context of future detector design.
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(Brief) Motivation

Theoretical and experimental guestions motivate a deep
exploration of the fundamental structure of nature

We have performed thousands of hypothesis tests & have no
significant evidence for physics beyond the Standard Model

Three
possibilities
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(Brief) Motivation

Theoretical and experimental guestions motivate a deep
exploration of the fundamental structure of nature

We have performed thousands of hypothesis tests & have no
significant evidence for physics beyond the Standard Model

Three This is what motivated this work!
possibilities

(3) We are not looking in the right place
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New Methods

' |
new ideas: There are many new
o Some . z;tOeLgC:deLSmuster ideas that make use
= searches anopg BuHukaspa = of modern machine
s (train signal . GI_SI_ VIF\I%NTN earnin
OLa ’ '
-8 -8 versus data) Factorized Topicsefl_ AD - g
3 &
a% The goal is to learn
- .
S = Most Some searches .d."'e(_:tly from dat.a,
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O (train with background as possible
- simulations) simulation)

sighal model independence

Adapted from BN and D. Shih, 2001.04990



https://Ihco2020.qgithub.io/homepaqge/ 2101.08320

A method testing ground: the LHCO

The LHC Olympics 2020

A Community Challenge for Anomaly
Detection in High Energy Physics

Gregor Kasieczka (ed),! Benjamin Nachman (ed),?3 David Shih (ed),* Oz Amram,®
Anders Andreassen,’® Kees Benkendorfer,”” Blaz Bortolato,® Gustaaf Brooijmans,’
Florencia Canelli,'° Jack H. Collins,'! Biwei Dai,'? Felipe F. De Freitas,'®> Barry M.
Dillon,%!* loan-Mihail Dinu,’> Zhongtian Dong,'® Julien Donini,'® Javier Duarte,'” D.
A. Faroughy!'? Julia Gonski,” Philip Harris,'® Alan Kahn,’ Jernej F. Kamenik,%!?
Charanjit K. Khosa,??3° Patrick Komiske,?! Luc Le Pottier,>?? Pablo
Martin-Ramiro,?23 Andrej Matevc,®'? Eric Metodiev,?! Vinicius Mikuni,'° Inés
Ochoa,?* Sang Eon Park,'® Maurizio Pierini,?® Dylan Rankin,'® Veronica Sanz,?0:2¢
Nilai Sarda,?” Uros Seljak,?3'? Aleks Smolkovic,® George Stein,>!? Cristina Mantilla
Suarez,” Manuel Szewc,?® Jesse Thaler,?! Steven Tsan,!” Silviu-Marian Udrescu,'®

Louis Vaslin,'® Jean-Roch Vlimant,?° Daniel Williams,? Mikaeel Yunus!8
e —————————————e



The Challenge

We provided a list of particle for each event (700
particles with the 3-vector of each particle)

1 dataset for R&D with labeled
sighal and background

3 black boxes with unlabeled data

The particle-level + detector-level
I simulation for background in the
I - black boxes was modified for each

dataset (think Pythia/Herwig, etc.)

Actually, all of the parameters are now public on Zenodo



The dataset

——— Fit(KSp= 0.69)
~~~~~~~ _ _ _ _ Background
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N
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mjj[GeV]

Dijet final state (allow for data-driven
background + complex final state).



| don’t have time to cover all of them - please see the
paper for details! I'll just highlight some general ideas.

Section Short Name Method Type Results Type
3.1 VRNN Unsupervised (i) (BB2,3) and (ii) (BB1)
3.2 ANODE Unsupervised (iii)
3.3 BuHuLaSpa Unsupervised (i) (BB2,3) and (ii) (BB1)
3.4 GAN-AE Unsupervised (i) (BB2-3) and (ii) (BB1)
3.5 GIS Unsupervised (i) (BB1)
3.6 LDA Unsupervised (i) (BB1-3)
3.7 PGA Unsupervised (ii) (BB1-2)
3.8 Reg. Likelihoods Unsupervised (iii)
3.9 UCluster Unsupervised (i) (BB2-3)
4.1 CWoLa Weakly Supervised (ii) (BB1-2)
4.2 CWoLa AE Compare | Weakly/Unsupervised (iii)
4.3 Tag N’ Train Weakly Supervised (i) (BB1-3)
4.4 SALAD Weakly Supervised (iii)
4.5 SA-CWoLa Weakly Supervised (iii)
5.1 Deep Ensemble Semisupervised (i) (BB1)
5.2 Factorized Topics Semisupervised (iii)
5.3 QUAK Semisupervised (i) (BB2,3) and (ii) (BB1)
5.4 LSTM Semisupervised (i) (BB1-3)

BB = black box; (i) = blinded, (ii) = unblinded




Supervision refers to the type of label
information provided to the ML during training.

Unsupervised = no labels

Weakly-supervised = noisy labels
Semi-supervised = partial labels
Supervised = full label information

Section Short Name Method Typ Results Type
3.1 VRNN Unsupervise d (i) (BB2,3) and (ii) (BB1)
3.2 ANODE Unsupervise d (iii)
3.3 BuHuLaSpa Unsupervise d (i) (BB2,3) and (ii) (BB1)
3.4 GAN-AE Unsupervise d (i) (BB2-3) and (ii) (BB1)
3.5 GIS Unsupervise d (i) (BB1)
3.6 LDA Unsupervise d (i) (BB1-3)
3.7 PGA Unsupervise d (ii) (BB1-2)
3.8 Reg. Likelihoods Unsupervise d (iii)
3.9 UCluster Unsupervise d (i) (BB2-3)
4.1 CWoLa Weakly Supervised (ii) (BB1-2)
4.2 CWoLa AE Compare | Weakly/Unsupervised (iii)
4.3 Tag N’ Train Weakly Supervised (i) (BB1-3)
44 SALAD Weakly Supervise d (iii)
4.5 SA-CWoLa Weakly Supervise d (iii)
5.1 Deep Ensemble Semisupervise d (i) (BB1)
5.2 Factorized Topics Semisupervised (iii)
5.3 QUAK Semisu pervise d (i) (BB2,3) and (ii) (BB1)
5.4 LSTM Semisu pervised (i) (BB1-3)

These categories are not exact
and the boundaries are not rigid!

*N.B. Not everyone agrees on the boundary
between semi-supervised and weakly supervised.




Solutions: Unsupervised

Unsupervised = no labels

Typically, the goal of these methods is to look
for events with low p(background)

Decoder

: Encoder

# &

Section Short Name Method Type Results Type
3.1 VRNN Unsupervised (i) (BB2,3) and (ii) (BB1)
3.2 ANODE Unsupervised (iii)
3.3 BuHuLaSpa Unsupervised (i) (BB2,3) and (ii) (BB1)
3.4 GAN-AE Unsupervised (i) (BB2-3) and (ii) (BB1)
3.5 GIS Unsupervised (i) (BB1)
3.6 LDA Unsupervised (i) (BB1-3)
3.7 PGA Unsupervised (ii) (BB1-2)
3.8 Reg. Likelihoods Unsupervised (iii)
3.9 UCluster Unsupervised (i) (BB2-3)
4.1 CWoLa Weakly Supervised (ii) (BB1-2)
4.2 CWoLa AE Compare | Weakly/Unsupervised (iii)
4.3 Tag N’ Train Weakly Supervised (i) (BB1-3)
44 SALAD Weakly Supervised (iii)
4.5 SA-CWoLa Weakly Supervised (iii)
5.1 Deep Ensemble Semisupervised (i) (BB1)
5.2 Factorized Topics Semisupervised (iii)
5.3 QUAK Semisupervised (i) (BB2,3) and (ii) (BB1)
5.4 LSTM Semisupervised (i) (BB1-3)

One strategy (autoencoders) is to try to
compress events and then uncompress
them. When x = uncompres(compress(x)),
then x probably has low p(x).

M. Farina, Y. Nakai, D. Shih, 1808.08992; T. Heimel, G.
Kasieczka, T. Plehn, J. Thompson, 1808.08979; + many more



Solutions: Weakly-supervised

Weakly-supervised = noisy labels

Typically, the goal of these methods is to look for events with
high p(possibly signal-enriched)/o(possibly signal-depleted)

e.g. Classification Without Labels
(CWolLa), events in a signal region are
labeled “signal” and events in a sideband

Section Short Name Method Type Results Type
p : " 1] )
L e | e oemamwen| L gre lapeled "background”. These labels
3.3 BuHuLaSpa Unsupervised (i) (BB2,3) and (11) (BB1) ( . T, r . .
14| GANAE | Vg | ) (8829 nd ) (5B are "noisy” but a classifier trained with
3.6 LDA Unsupervised (i) (BB1-3) '
Unpersed | 3 (9012 them can detect the presence of a signal.
3.8 Reg. Likelihoods Unsupervised (iii)
3.9 gUCluster UnsuI;ervised (i) (BB2-3)
4.1 CWoLa Weakly Supervised (ii) (BB1-2)
4.2 CWoLa AE Compare | Weakly/Unsupervised (iii)
4.3 Tag N’ Train Weakly Supervised (i) (BB1-3)
44 SALAD Weakly Supervised (iii)
4.5 SA-CWoLa Weakly Supervised (iii)
5.1 Deep Ensemble Semisupervised (i) (BB1)
5.2 Factorized Topics Semisupervised (iii)
5.3 QUAK Semisupervised (i) (BB2,3) and (ii) (BB1)
> LT Semisupervised () (BBL-3) E. Metodiev, BN, J. Thaler, 1708.02949; J. Collins, K. Howe, BN, 1805.02664




Solutions: Weakly-supervised

Weakly-supervised = noisy labels

to look for events with
ssibly signal-depleted)

dN/dMres

fication Without Labels

nts in a signal region are

" and events in a sideband
ackground”. These labels
It a classifier trained with
>t the presence of a signal.

Features for
3.9 training CWolLa

49 classifier + be careful to not pay a big trails factor

4.3 ‘lag N’ '1raimm - Weakly dSupervised (1) (BB1-3)

44 SALAD Weakly Supervised (iii) r

4.5 SA-CWoLa Weakly Supervised (iii)

5.1 Deep Ensemble Semisupervised (i) (BB1)

5.2 Factorized Topics Semisupervised (iii)

5.3 QUAK Semisupervised (i) (BB2,3) and (ii) (BB1)

54 LSTM Semisupervised (i) (BB1-3) E. Metodiev, BN, J. Thaler, 1708.02949: J. Collins, K. Howe, BN, 1805.02664




Solutions: Semi-supervised

Semi-supervised = partial labels

Typically, these methods use some signal
simulations to build signal sensitivity

Section Short Name Method Type Results Type
3.1 VRNN Unsupervised (i) (BB2,3) and (ii) (BB1)
3.2 ANODE Unsupervised (iii)
3.3 BuHuLaSpa Unsupervised (i) (BB2,3) and (ii) (BB1)
3.4 GAN-AE Unsupervised (i) (BB2-3) and (ii) (BB1)
3.5 GIS Unsupervised (i) (BB1)
3.6 LDA Unsupervised (i) (BB1-3)
3.7 PGA Unsupervised (ii) (BB1-2)
3.8 Reg. Likelihoods Unsupervised (iii)
3.9 UCluster Unsupervised (i) (BB2-3)
4.1 CWoLa Weakly Supervised (ii) (BB1-2)
4.2 CWoLa AE Compare | Weakly/Unsupervised (iii)
4.3 Tag N’ Train Weakly Supervised (i) (BB1-3)
44 SALAD Weakly Supervised (iii)
4.5 SA-CWoLa Weakly Supervised (iii)
5.1 Deep Ensemble Semisupervised (i) (BB1)
5.2 Factorized Topics Semisupervised (iii)
5.3 QUAK Semisupervised (i) (BB2,3) and (ii) (BB1)
5.4 LSTM Semisupervised (i) (BB1-3)

Quasi Anomalous

QCD Knowledge (QUAK)

&

Approx. sig

& e

Approx. sig. \

Approx. sig.

Signal

S. Park, D. Rankin, S.-M. Udrescu, M. Yunus, P. Harris, 2011.03550



CWoLa Hunting on the LHCO
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J. Collins and BN, 2101.08320



CWoLa Hunting on the LHCO

3500 4000 4500 5000 3500 4000 4500 5000
mjj/GeV

J. Collins and BN, 2101.08320



CWoLa Hunting with ATLAS Data

ATLAS Collaboration
PRL 125 (2020) 131801, 2005.02983

r— 500_| L | L | L | L T T T _100 C>J\ — SOO_I [ | L | L | L I I:ﬂ _100 C>D\
> | ATLAS S o | ATLAS L S
= 400 Vs =13 TeV, 139 b~ i O 2 400 Vs =13 TeV, 139 fb-" g O
e ~ No Injected Signal 3 1 T c ~ X Injected Signal 4 y L1l
- 1 (10 > T ma =3000 GeV 1 10 =
3001~ i = 300 1y =400 Gev = =
E 3 B mc =80 GeV 3
200 — 200 —
i & 1 B1072 i 1 B107°
= | = 100[ R
100: : OO: % :
O:I L1 | I | I T | I L1 1 I: 10_3 O:I I | I T | I | I | I I: 10_3
0 100 200 300 400 500 0 100 200 300 400 500
m, [GeV] m,y [GeV]

First round, keep it simple: feature space is 2D (jet masses)



CWoLa Hunting with ATLAS Data
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CWolLa hunting at ete-?

o apply CWolLa, need
a resonant feature

dN/dMres

Features for
training CWol.a
classifier




CWolLa hunting at ete-?

o apply CWolLa, need
a resonant feature

dN/dMres

...We can scan an
Invariant mass in e+e-
with radiative return!

Features for
training CWolLa
classifier
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ABSTRACT: Experiments at a future eTe™ collider will be able to search for new par-
ticles with masses below the nominal centre-of-mass energy by analyzing collisions with
initial-state radiation (radiative return). We show that machine learning methods based on
semisupervised and weakly supervised learning can achieve model-independent sensitivity
to the production of new particles in radiative return events. In addition to a first applica-
tion of these methods in e*e™ collisions, our study is the first to combine weak supervision
with variable-dimensional information by deploying a deep sets neural network architec-
ture. We have also investigated some of the experimental aspects of anomaly detection in
radiative return events and discuss these in the context of future detector design.
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CWolLa hunting at ete-?

C e q
1 TeV* ete-radiative return,
reconstruct COM energy 1z
10° MadGraph5 + Pythia8 + Delphes3 ziagcnkagl'ro;:i 350 GeV €+ Y q_
F—*1 Signal, my = 700 GeV
100 _
b
e ¢
= f a .
E 10—2 X g b
5 S
g 10_3 a \\\{
§ L I et Y
10 b
10> :
r- *There is nothing special about
1076 | IJ - 1 TeV - we choose it for

0 200 400 600 800 1000

X Illustration purposes only
Measured \/g (outgoing photon) [GeV]



J. Gonski, J. Lai, BN, . Ochoa, 2108.13451

MadGraph + Pythia + ILD Delphes |f| < 4

Deep Sets Classifier as EnergyFlow/Particle Flow Networks™

4-vectors for all jets + 5 n-subjettiness# variables
+ 4 bit b-tagging discriminant
N.B. high-and

Scale all energies by the Hr variable-dimensional!

#J. Thaler, K. Van Tilourg, 1108.2701
*P. Komiske, E. Metodiev, J. Thaler, 1810.05165, https://energyflow.network



https://github.com/iLCSoft/ILCDelphes
https://energyflow.network

J. Gonski, J. Lai, BN, . Ochoa, 2108.13451

Setup (continued)

Signal region [GeV| Sideband region |GeV|
myx, mq= 350 GeV, 40 GeV | [325, 375) 275, 325) U [375, 425)
mx, mq= 700 GeV, 100 GeV | [675, 725) (625, 675) U [725, 775)
101 _ ' Background
MadGraph5 + Pythia8 + Delphes3 Signal, my = 350 GeV
F—*1 Signal, my = 700 GeV
10°
> 107!
:
g 102
£
< 10-* '
10—5-; lr
1076 : | , gl u .

0 200 400 600 800 1000
Measured \/g (outgoing photon) [GeV]
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Background-only

ROC: Background in SB vs. background in SR, ROC: Background in SB vs. background in SR,

truth \/E truth \/E

1.0 1 0.0% (0=0.0): AUC=0.48 1.0 A

(
0.3% (0=0.5): AUC=0.48
0.6% (0=1.0): AUC=0.48
(
(

0.0% (0=0.0): AUC=0.5
0.3% (0=0.5): AUC=0.5
0.6% (0=1.0): AUC=0.5
(
(

1.3% (0=2.0): AUC=0.48
1.9% (0=3.0): AUC=0.47

3.1% (0=5.0): AUC=0.48

100.0% (o=): AUC=0.49

o
o)

1.3% (0=2.0): AUC=0.51
1.9% (0=3.0): AUC=0.49

3.1% (0=5.0): AUC=0.5

100.0% (o=): AUC=0.49

o
(0]
1

o
o))
o
o
1

0.4 1

o
N
1

Background rejection (1-FPR)
Background rejection (1-FPR)

350 GeV 750 GeV

0.2 0.2
signal region signal region
0.0 A1 0.0 A1
010 0j2 014 0r6 018 1f0 oio 0i2 Oi4 0.I6 Oi8 1.IO
Signal efficiency (TPR) Signal efficiency (TPR)

When no signal, does not find anything (Ht scaling critical!)
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Signal Sensitivity

SIC: Signal (my = 350 GeV) vs. background, SIC: Signal (mx = 700 GeV) vs. background,
truth V'3 | truth V&
350 GeV signal region | 750 GeV signal region

101 3 101 E

Signal sensitivity (TPR/V (FPR))
Signal sensitivity (TPR/v (FPR))

AUC=0.87
3.1% (0=5.0): AUC=0.93
100.0% (o==): AUC=0.99

10° 4 10° 5
—— 0.0% (0=0.0): AUC=0.67 —— 0.0% (0=0.0): AUC=0.42
—— 0.3% (0=0.5): AUC=0.68 —— 0.3% (0=0.5): AUC=0.73
10-1 —— 0.6% (0=1.0): AUC=0.73 10-1 —— 0.6% (0=1.0): AUC=0.79
—— 1.3% (0=2.0): AUC=0.82 —— 1.3% (0=2.0): AUC=0.91
):

1.9% (0=3.0): AUC=0.86 1.9% (0=3.0
3.1% (0=5.0): AUC=0.9 ]
100.0% (o=w): AUC=0.99

T T T T T 10_2 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Signal efficiency (TPR) Signal efficiency (TPR)

102

Normalized so > 1 means “better than nothing”
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Detector Considerations
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Conclusions and outlook

Deep learning-based
anomaly detection is a
promising avenue to
broaden the energy frontier
physics portfolio

| did not cover every proposal
- see the Living Review for more!
Can we extend density estimation techniques
like CATHODE to high dimensions?

This methodology can be extended beyond dijets to
radiative return in e+e-; need to start thinking now about
implications for detector software, and computing!



https://iml-wg.github.io/HEPML-LivingReview/
https://arxiv.org/abs/2109.00546




