Power corrections to TMD factorization

Alexey Vladimirov
for
I.Scimemi

based on [2109.09771] \& [2204.03856]

U N I V E R S I D A D
COMPLUTENSE
M A DRID
D 18 POPR

XXXIX International Workshop on Deep:
inelastio Scattering and Related Subjects
Sentlago de Oompestela, 2-6 why core

Transverse momentum dependent factorization

$$
\frac{d \sigma}{d q_{T}} \simeq \sigma_{0} \int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i\left(b q_{T}\right)}\left|C_{V}(Q)\right|^{2} F_{1}\left(x_{1}, b ; Q, Q^{2}\right) F_{2}\left(x_{2}, b ; Q, Q^{2}\right)
$$

LP term is studied VERY WELL!

q is momentum of initiating EW-boson

$$
\begin{gathered}
q^{2}= \pm Q^{2} \\
q_{T}^{\mu} \text { transverse component }
\end{gathered}
$$

$$
\left\{\begin{array}{c}
Q^{2} \gg \Lambda_{Q C D}^{2} \\
Q^{2} \gg q_{T}^{2}
\end{array}\right.
$$

Transverse momentum dependent factorization

$$
\begin{aligned}
\frac{d \sigma}{d q_{T}} \simeq & \sigma_{0} \int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i\left(b q_{T}\right)}\left\{\left|C_{V}(Q)\right|^{2} F_{1}\left(x_{1}, b ; Q, Q^{2}\right) F_{2}\left(x_{2}, b ; Q, Q^{2}\right)\right. \\
& +\left(\frac{q_{T}}{Q} \text { or } \frac{\Lambda}{Q}\right)\left[C_{2}(Q) \otimes F_{3}\left(x, b ; Q, Q^{2}\right) F_{4}\left(x, b ; Q, Q^{2}\right)\right]\left(x_{1}, x_{2}\right) \longleftarrow \mathrm{NLP} \\
& +\left(\frac{q_{T}^{2}}{Q^{2}} \text { or } \ldots\right)\left[C_{3}(Q) \otimes F_{5}\left(x, b ; Q, Q^{2}\right) F_{6}\left(x, b ; Q, Q^{2}\right)\right]\left(x_{1}, x_{2}\right) \longleftarrow \text { NNLP } \\
& +\ldots
\end{aligned}
$$

The talk is very brief review of main results

Outline

- TMD operator expansion
- TMD-twist
- TMD factorization at NLP/NLO
- Evolution of twist-three TMDs

Motivation

- Sub-leading power observables

[CLAS, 2101.03544]

Motivation

- Sub-leading power observables
- Increase of applicability domain

Motivation

- Sub-leading power observables
- Increase of applicability domain
- Theoretical consistency

Phase space of EIC is centered directly in
the transition region

> COMPASS, JLab have large contribution of power corrections

Sources of power corrections

New method
 TMD operator expansion

features

- Operator-level formulation
- Systematicness of OPE
- Position space [a lot of simplification for beyond leading twist]
- Has common parts with small-x and SCET computations

TMD operator expansion

is conceptually similar to ordinary OPE

The only difference is counting rule for y

$$
\begin{gathered}
W_{\text {DY }}^{\mu \nu}=\int \frac{d^{4} y}{(2 \pi)^{4}} e^{-i(y q)} \sum_{X}\left\langle p_{1}, p_{2}\right| J^{\mu \dagger}(y)|X\rangle\langle X| J^{\nu}(0)\left|p_{1}, p_{2}\right\rangle, \\
W_{\text {SIDIS }}^{\mu \nu}=\int \frac{d^{4} y}{(2 \pi)^{4}} e^{i(y q)} \sum_{X}\left\langle p_{1}\right| J^{\mu \dagger}(y)\left|p_{2}, X\right\rangle\left\langle p_{2}, X\right| J^{\nu}(0)\left|p_{1}\right\rangle, \\
W_{\text {SIA }}^{\mu \nu}=\int \frac{d^{4} y}{(2 \pi)^{4}} e^{i(y q)} \sum_{X}\langle 0| J^{\mu \dagger}(y)\left|p_{1}, p_{2}, X\right\rangle\left\langle p_{1}, p_{2}, X\right| J^{\nu}(0)|0\rangle . \\
W^{\mu \nu}(q) \\
(q \cdot y) \sim 1 \quad J^{\mu}(y) J^{\nu}(0) \Longrightarrow \mathcal{J}_{\text {eff }}^{\mu \nu}(y) \rightarrow \text { fact.theorem } \\
\end{gathered} \quad \Rightarrow \quad\left\{y^{+}, y^{-}, y_{T}\right\} \sim\left\{\frac{1}{q^{-}}, \frac{1}{q^{+}}, \frac{1}{q_{T}}\right\} \sim \frac{1}{Q}\left\{1,1, \lambda^{-1}\right\},
$$

To be accounted in operator expansion

$$
z_{T}^{\mu} \partial_{\mu} q \sim \mathrm{NLP}, \quad y_{T}^{\mu} \partial_{\mu} q \sim \mathrm{LP}
$$

Geometric structure of TMD operator expansion

Two
light-cone operators
\Downarrow
Two
parton distribution function
PDFs \& FFs

Geometric structure of TMD operator expansion

Four
light-cone operators
\Downarrow
Two
TMD distributions TMDPDFs \& TMDFFs

$$
\bar{q}_{i}(\lambda n+b)[\lambda n+b, \pm \infty n+b][\pm \infty n, 0] q_{j}(0)
$$

Geometric structure of TMD operator expansion

Four

light-cone operators
\Downarrow
Two
TMD distributions TMDPDFs \& TMDFFs

TMD operators and their divergences

Any TMD operator is the product of two semi-compact operators

$$
\mathcal{O}_{N M}\left(\left\{z_{1}, \ldots, z_{n}\right\}, b\right)=U_{N}\left(\left\{z_{1}, \ldots\right\}, b\right) U_{M}\left(\left\{\ldots, z_{n}\right\}, 0\right)
$$

$\mathcal{O}_{N M}^{\text {bare }}\left(\left\{z_{1}, \ldots, z_{n}\right\}, b\right)=R\left(b^{2}\right) Z_{U_{N}}\left(\left\{z_{1}, \ldots\right\}\right) \otimes Z_{U_{M}}\left(\left\{\ldots, z_{n}\right\}\right) \otimes \mathcal{O}_{N M}(\mu, \zeta)$

- UV divergence for U_{N}
- UV divergence for U_{M}
- Rapidity divergence

Three independent divergences Three renormalization constants
Three anomalous dimensions

TMD-twist $=(\mathrm{N}, \mathrm{M})$ two integer numbers

$$
\mathrm{LP}=\mathrm{TMD}-\mathrm{twist}-(1,1)
$$

$$
\Phi_{11}(x, b)=\int d z e^{-i z p_{+} x}\langle p, s \underbrace{\mid \bar{q}[z n+b, \infty]}_{\mathrm{tw}-1} \gamma^{+} \underbrace{[\infty, 0] q}_{\mathrm{tw}-1} \mid p,\rangle
$$

$$
\text { NLP }=\text { TMD-twist- }(2,1) \&(1,2)
$$

$$
\Phi_{21}\left(x_{1}, x_{2}, x_{3}, b\right)=\int d z e^{-i p_{+} \sum_{i} x_{i} z_{i}}\langle p, s \mid \underbrace{\left.\bar{q}\left[z_{1} n+b, z_{2} n+b\right] F_{\mu+[. ., \infty]}\right]}_{\text {tw- } 2} \gamma^{+} \underbrace{\left[\infty, z_{3} n\right] q \mid p}_{\text {tw- }},\rangle
$$

$$
\Phi_{12}\left(x_{1}, x_{2}, x_{3}, b\right)=\int d z e^{-i p_{+} \sum_{i} x_{i} z_{i}}\langle p, s| \underbrace{\bar{q}\left[z_{1} n+b, \infty\right]}_{\text {tw- }} \gamma^{+} \underbrace{\left[\infty, z_{2} n\right] F_{\mu+\left[z_{2} n, z_{3} n\right] q}|p,\rangle}_{\text {tw- } 2}
$$

$$
\text { NNLP }=\text { TMD-twist- }(3,1) \&(2,2) \&(1,3)
$$

To momentum-fraction space

Evolution equations have involved structure

$$
\begin{gathered}
\mu^{2} \frac{d}{d \mu^{2}} \Phi_{\mu, 21}^{[\Gamma]}=\left(\frac{\Gamma_{\text {cusp }}}{2} \ln \left(\frac{\mu^{2}}{\zeta}\right)+\Upsilon_{x_{1} x_{2} x_{3}}+2 \pi i s \Theta_{x_{1} x_{2} x_{3}}\right) \Phi_{\mu, 21}^{[\Gamma]} \\
+\mathbb{P}_{x_{2} x_{1}}^{A} \otimes \Phi_{\nu, 21}^{\left[\gamma^{\nu} \gamma^{\mu} \Gamma\right]}+\mathbb{P}_{x_{2} x_{1}}^{B} \otimes \Phi_{\nu, 21}^{\left[\gamma^{\mu} \gamma^{\nu} \Gamma\right]}, \\
\mu^{2} \frac{d}{d \mu^{2}} \Phi_{\mu, 12}^{[\Gamma]}=\left(\frac{\Gamma_{\text {cusp }}}{2} \ln \left(\frac{\mu^{2}}{\zeta}\right)+\Upsilon_{x_{3} x_{2} x_{1}}+2 \pi i s \Theta_{x_{3} x_{2} x_{1}}\right) \Phi_{\mu, 12}^{[\Gamma]} \\
+\mathbb{P}_{x_{2} x_{3}}^{A} \otimes \Phi_{\nu, 12}^{\left[\Gamma \gamma^{\mu} \gamma^{\nu}\right]}+\mathbb{P}_{x_{2} x_{3}}^{B} \otimes \Phi_{\nu, 12}^{\left[\Gamma \gamma^{\nu} \gamma^{\mu}\right]}, \\
\zeta \frac{d}{d \zeta} \Phi_{\mu, 12}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3}, b ; \mu, \zeta\right)=-\mathcal{D}(b, \mu) \Phi_{\mu, 12}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3}, b ; \mu, \zeta\right), \\
\zeta \frac{d}{d \zeta} \Phi_{\mu, 21}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3}, b ; \mu, \zeta\right)=-\mathcal{D}(b, \mu) \Phi_{\mu, 21}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3}, b ; \mu, \zeta\right) .
\end{gathered}
$$

Complex evolution for complex functions

Physical functions are
real combinations

T-parity-definite \& real combinations

$$
\begin{aligned}
\Phi_{\mu, \oplus}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3}, b\right) & =\frac{\Phi_{\mu, 21}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3}, b\right)+\Phi_{\mu, 12}^{[\Gamma]}\left(-x_{3},-x_{2},-x_{1}, b\right)}{2} \\
\Phi_{\mu, \ominus}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3}, b\right) & =i \frac{\Phi_{\mu, 21}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3}, b\right)-\Phi_{\mu, 12}^{[\Gamma]}\left(-x_{3},-x_{2},-x_{1}, b\right)}{2}
\end{aligned}
$$

Real functions, with real evolution

Price: evolution mixes \oplus and \ominus sectors

- Three Γ-structures $\left\{\gamma^{+}, \gamma^{+} \gamma^{5}, i \sigma^{\alpha+} \gamma^{5}\right\}$
- In the tensor case, one can sort $F_{\mu+} \sigma^{\alpha+}$-tensors into $J=0,1,2$ cases.
- 32 distributions (\oplus and \ominus)
- 16 T-odd and 16 T-even

Example

$$
\begin{aligned}
\Phi_{\bullet}^{\mu\left[\gamma^{+}\right]}\left(x_{1,2,3}, b\right)= & \epsilon^{\mu \nu} s_{T \nu} M f_{\bullet T}\left(x_{1,2,3}, b\right)+i b^{\mu} M^{2} f_{\bullet}^{\perp}\left(x_{1,2,3}, b\right) \\
& +i \lambda \epsilon^{\mu \nu} b_{\nu} M^{2} f_{\bullet L}^{\perp}\left(x_{1,2,3}, b\right)+b^{2} M^{3} \epsilon_{T}^{\mu \nu}\left(\frac{g_{T, \nu \rho}}{2}-\frac{b_{\nu} b_{\rho}}{b^{2}}\right) s_{T}^{\rho} f_{\bullet T}^{\perp}\left(x_{1,2,3}, b\right) \\
& f_{\oplus, T ; D Y}=f_{\oplus, T ; S I D I S}, \quad f_{\oplus ; D Y}^{\perp}=-f_{\oplus ; S I D I S}^{\perp}
\end{aligned}
$$

	U	L	$\mathrm{T}_{J=0}$	$\mathrm{~T}_{J=1}$	$\mathrm{~T}_{J=2}$
U	f_{\bullet}^{\perp}	g_{\bullet}^{\perp}		h_{\bullet}	h_{\bullet}^{\perp}
L	$f_{\bullet L}^{\perp}$	$g_{\bullet L}^{\perp}$	$h_{\bullet L}$		$h_{\bullet L}^{\perp}$
T	$f_{\bullet T}, \quad f_{\bullet T}^{\perp}$	$g_{\bullet T}, \quad g_{\bullet T}^{\perp}$	$h_{\bullet T}^{D} \perp$	$h_{\bullet T}^{A} \perp$	$h_{\bullet T}^{S}, \quad h_{\bullet}^{T} \perp$

Evolution equations split into two cases:

Evolution with kernels \mathbb{P}^{A} or \mathbb{P}^{B}

Example \mathbb{P}^{A}

$$
\begin{aligned}
& \mu^{2} \frac{d}{d \mu^{2}}\binom{H_{\oplus}^{A}}{H_{\ominus}^{A}}=\left(\frac{\Gamma_{\text {cusp }}}{2} \ln \left(\frac{\mu^{2}}{\zeta}\right)+\Upsilon_{x_{1} x_{2} x_{3}}\right)\binom{H_{\oplus}^{A}}{H_{\ominus}^{A}} \\
& +\left(\begin{array}{cc}
2 \mathbb{P}_{x_{2} x_{1}}^{A} & 2 \pi s \Theta_{x_{1} x_{2} x_{3}} \\
-2 \pi s \Theta_{x_{1} x_{2} x_{3}} & 2 \mathbb{P}_{x_{2} x_{1}}^{A}
\end{array}\right)\binom{H_{\oplus}^{A}}{H_{\ominus}^{A}}, \\
& \binom{f_{\oplus}^{\perp}+g_{\ominus}^{\perp}}{f_{\ominus}^{\oplus}-g_{\oplus}^{\perp}}, \quad\left(\begin{array}{c}
f \\
f_{\oplus, L}^{\perp}+g_{\ominus}^{\perp}, L \\
f_{\ominus, L}^{\perp}-g_{\oplus, L}^{\perp}
\end{array}\right), \quad\binom{f_{\oplus, T}+g_{\ominus, T}}{f_{\ominus, T}-g_{\oplus, T}}, \quad\binom{f_{\oplus, T}^{\perp}+g_{\ominus, T}^{\perp}}{f_{\ominus, T}^{\perp}-g_{\oplus, T}^{\perp}}, \\
& \binom{h_{\oplus}}{h_{\ominus}},\binom{h_{\oplus, L}}{h_{\ominus, L}}, \quad\binom{h_{\oplus, T}^{A} \perp}{h_{\ominus, T}^{A}, T},\binom{h_{\oplus, T}^{D}+T}{h_{\ominus, T}^{D}, T} .
\end{aligned}
$$

- Real functions $=$ real evolution
- Mixes T-odd and T-even distributions
- Mixing is proportional to s, so T-parity is preserved, and distributions are universal
- Structure simplifies at large- N_{c}

Effective operator for any process (DY, SIDIS, SIA)

$$
\begin{align*}
& \mathcal{J}_{\text {eff }}^{\mu \nu}(q)=\int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i(q b)}\left\{\int d x d \tilde{x} \delta\left(x-\frac{q^{+}}{p_{1}^{+}}\right) \delta\left(\tilde{x}-\frac{q^{-}}{p_{2}^{-}}\right)\left|C_{1}\right|^{2} \mathcal{J}_{1111}^{\mu \nu}(x, \tilde{x}, b)\right. \tag{6.17}\\
&+ \int[d x] d \tilde{x} \delta\left(\tilde{x}-\frac{q^{-}}{p_{2}^{-}}\right) \\
& \times\left(\delta\left(x_{1}-\frac{q_{1}^{+}}{p_{1}^{+}}\right) C_{1}^{*} C_{2}\left(x_{2,3}\right) \mathcal{J}_{1211}^{\mu \nu}(x, \tilde{x}, b)+\delta\left(x_{3}+\frac{q_{1}^{+}}{p_{1}^{+}}\right) C_{2}^{*}\left(x_{1,2}\right) C_{1} \mathcal{J}_{2111}^{\mu \nu}(x, \tilde{x}, b)\right) \\
&+ \int d x[d \tilde{x}] \delta\left(x-\frac{q^{+}}{p_{1}^{+}}\right) \\
& \times\left(C_{1}^{*} C_{2}\left(\tilde{x}_{2,3}\right) \delta\left(\tilde{x}_{1}-\frac{q^{-}}{p_{2}^{-}}\right) \mathcal{J}_{1112}^{\mu \nu}(x, \tilde{x}, b)+C_{2}^{*}\left(\tilde{x}_{1,2}\right) C_{1} \delta\left(\tilde{x}_{3}+\frac{q^{-}}{p_{2}^{-}}\right) \mathcal{J}_{1121}^{\mu \nu}(x, \tilde{x}, b)\right) \\
&\quad+\ldots\}
\end{align*}
$$

Effective operator for any process (DY, SIDIS, SIA)

$$
\begin{equation*}
\mathcal{J}_{\text {eff }}^{\mu \nu}(q)=\int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i(q b)}\left\{\left.\int d x d \tilde{x} \delta\left(x-\frac{q^{+}}{p_{1}^{+}}\right) \delta\left(\tilde{x}-\frac{q^{-}}{p_{2}^{-}}\right) \right\rvert\, C_{1}{ }^{2} \mathcal{J}_{1111}^{\mu \nu}(x, \tilde{x}, b)\right. \tag{6.17}
\end{equation*}
$$

$$
\begin{aligned}
& \mathcal{J}_{1111}^{\mu \nu}(x, \tilde{x}, b)=\frac{\gamma_{T, i j}^{\mu} \gamma_{T, k l}^{\nu}}{N_{c}}\left(\mathcal{O}_{11, \bar{n}}^{l i}(x, b) \overline{\mathcal{O}}_{11, n}^{j k}(\tilde{x}, b)+\overline{\mathcal{O}}_{11, \bar{n}}^{j k}(x, b) \mathcal{O}_{11, n}^{l i}(\tilde{x}, b)\right) \\
& +i \frac{n^{\mu} \gamma_{T, i j}^{\rho} \gamma_{T, k l}^{\nu}+n^{\nu} \gamma_{T, i j}^{\mu} \gamma_{T, k l}^{\rho}}{q^{+} N_{c}}\left(\partial_{\rho} \mathcal{O}_{11, \bar{n}}^{l i}(x, b) \overline{\mathcal{O}}_{11, n}^{j k}(\tilde{x}, b)+\partial_{\rho} \overline{\mathcal{O}}_{11, \bar{n}}^{j k}(x, b) \mathcal{O}_{11, n}^{l i}(\tilde{x}, b)\right) \\
& \quad+i \frac{\bar{n}^{\mu} \gamma_{T, i j}^{\rho} \gamma_{T, k l}^{\nu}+\bar{n}^{\nu} \gamma_{T, i j}^{\mu} \gamma_{T, k l}^{\rho}}{q^{-} N_{c}}\left(\mathcal{O}_{11, \bar{n}}^{l i}(x, b) \partial_{\rho} \overline{\mathcal{O}}_{11, n}^{j k}(\tilde{x}, b)+\overline{\mathcal{O}}_{11, \bar{n}}^{j k}(x, b) \partial_{\rho} \mathcal{O}_{11, n}^{l i}(\tilde{x}, b)\right),
\end{aligned}
$$

- Operators of $(1,1) \times(1,1)$ (ordinary TMDs)
- Contains LP and NLP (total derivatives)
- Restores EM gauge invariance up to λ^{3}

$$
q_{\mu} J_{1111}^{\mu \nu} \quad \sim \quad\left(p_{1}^{-} q_{T}+p_{2}^{+} q_{T}\right) J_{1111}
$$

Effective operator for any process (DY, SIDIS, SIA)

$$
\begin{aligned}
& \mathcal{J}_{\text {eff }}^{\mu \nu}(q)=\int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i(q b)}\left\{\int d x d \tilde{x} \delta\left(x-\frac{q^{+}}{p_{1}^{+}}\right) \delta\left(\tilde{x}-\frac{q^{-}}{p_{2}^{-}}\right)\left|C_{1}\right|^{2} \mathcal{J}_{1111}^{\mu \nu}(x, \tilde{x}, b)\right. \\
& +\int[d x] d \tilde{x} \delta\left(\tilde{x}-\frac{q^{-}}{p_{2}^{-}}\right) \\
& \quad \times\left(\delta\left(x_{1}-\frac{q_{1}^{+}}{p_{1}^{+}}\right) C_{1}^{*} C_{2}\left(x_{2},\right) \mathcal{J}_{1211}^{\mu \nu}(x, \tilde{x}, b)-\delta\left(x_{3}+\frac{q_{1}^{+}}{p_{1}^{+}}\right) C_{2}^{*}\left(x_{1,2}\right) C_{1} \mathcal{J}_{2111}^{\mu \nu}(x, \tilde{x}, b)\right) \\
& \quad+\int d x[d \tilde{x}] \delta\left(x-\frac{q^{+}}{p_{1}^{+}}\right) \\
& \\
& \mathcal{J}_{1211}^{\mu \nu}(x, \tilde{x}, b)= \\
& \frac{i g}{x_{2}}\left(\frac{\bar{n}^{\nu}}{q^{-}}-\frac{n^{\nu}}{q^{+}}\right) \frac{\gamma_{T, i j}^{\mu} \delta_{k l}}{N_{c}}\left(\mathcal{O}_{12, \bar{n}}^{j k}(x, b) \overline{\mathcal{O}}_{11, n}^{j k}(\tilde{x}, b)-\overline{\mathcal{O}}_{12, \bar{n}}^{j k}(x, b) \mathcal{O}_{11, n}^{l i}(\tilde{x}, b)\right)
\end{aligned}
$$

- Operators of $(1,2) \times(1,1)$
- EM gauge invarint only up to NNLP

$$
q_{\mu} J_{1211}^{\mu \nu} \quad \sim\left(p_{1}^{-}+p_{2}^{+}\right) J_{1211}
$$

Effective operator for any process (DY, SIDIS, SIA)

$$
\begin{align*}
& \mathcal{J}_{\mathrm{eff}}^{\mu \nu}(q)= \int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i(q b)}\left\{\int d x d \tilde{x} \delta\left(x-\frac{q^{+}}{p_{1}^{+}}\right) \delta\left(\tilde{x}-\frac{q^{-}}{p_{2}^{-}}\right)\right. \tag{6.17}\\
&+ \int[d x] d \tilde{x} \delta\left(\tilde{x}-\frac{q^{-}}{p_{2}^{-}}\right) \\
& \times\left(\delta\left(x_{1}-\frac{q_{1}^{+}}{p_{1}^{+}}\right) \mathcal{J}_{1111}^{\mu \nu}(x, \tilde{x}, b)\right. \\
&+ \int d x[d \tilde{x}] \delta\left(x-\frac{q^{+}}{p_{1}^{+}}\right) \\
& C_{1}^{*} C_{2}\left(x_{2,3}\right) \mathcal{J}_{1211}^{\mu \nu}(x, \tilde{x}, b)+\delta\left(x_{3}+\frac{q_{1}^{+}}{p_{1}^{+}}\right) C_{2}^{\left.\left.C_{2}^{*}\left(x_{1,2}\right) C_{1}\right\}_{2111}^{\mu \nu}(x, \tilde{x}, b)\right)} \\
& C_{2}\left(x_{1,2}\right)= 1+a_{s}\left[C_{F}\left(-\mathbf{L}_{Q}^{2}+3 \mathbf{L}_{Q}-8+\frac{\pi^{2}}{6}\right)+O\left(\mathbf{L}_{Q}^{2}+\mathbf{L}_{Q}-3+\frac{\pi^{2}}{6}\right)+C_{A} \frac{x_{1}+x_{2}}{x_{1}} \ln \left(\frac{x_{1}+x_{2}}{x_{2}}\right)\right. \\
&\left.+\left(C_{F}-\frac{C_{A}}{2}\right) \frac{x_{1}+x_{2}}{x_{2}} \ln \left(\frac{x_{1}+x_{2}}{x_{1}}\right)\left(2 \mathbf{L}_{Q}-\ln \left(\frac{x_{1}+x_{2}}{x_{1}}\right)-4\right)\right]
\end{align*}
$$

- Coefficient functions up to NLO
- C_{1} is know up to $\mathrm{N}^{3} \mathrm{LO}$
- C_{1} is same for LP, NLP, ... parts of operator $J_{1111}^{\mu \nu}$

Conclusion

Theory of power corrections to the TMD factorization essentially progressed during last years.
[Balitsky,Tarasov,17], [Balitsky,19-21], [Ebert, et al, 21], [Moos,AV,20] Still far from practice.

TMD operator expansion - an efficient approach to TMD factorization beyond LP

- Operator level
- Position space
- Strict \& intuitive rules for operator sorting (TMD-twist)
- All processes

TMD factorization at NLP is derived

- Coefficient function at NLO
- Evolution at NLO
- Rapidity evolution of NLP is the same as for LP

Conclusion

Theory of power corrections to the TMD factorization essentially progressed during last years.
[Balitsky,Tarasov,17], [Balitsky,19-21], [Ebert, et al, 21], [Moos,AV,20] Still far from practice.

TMD operator expansion - an efficient approach to TMD factorization beyond LP

- Operator level
- Position space
- Strict \& intuitive rules for operator sorting (TMD-twist)
- All processes

TMD factorization at NLP is derived

- Coefficient function at NLO
- Evolution at NLO
- Rapidity evolution of NLP is the same as for LP

Thank you for attention!

