Two-loop vector singlet coefficient function for DVCS

J. Schoenleber

University of Regensburg

Work in progress V. Braun, Y. Ji, J.S.

May 2, 2022

- Generalized parton distributions (GPDs) reveal interesting facts about nucleon structure, such as 3d-tomography and orbital angular momentum in terms of its constituents.
- Deeply virtual Compton scattering (DVCS) is the most prominent process to extract GPDs from data. Measured at JLAB and upcoming EIC.
- Radiative corrections to DVCS are known to be substantial. NNLO is required for good precision of the GPD extraction from data.
- NNLO analysis of DVCS has been done [Kumericki:2007sa], but only in the conformal scheme (CS) \leftarrow GPD model must be constructed in CS and the translation of CS to $\overline{M S}$ is time consuming and at NNLO it requires the calculation of two-loop (singlet) conformal anomaly (difficult).

Deeply Virtual Compton Scattering

DVCS

$$
\gamma^{*}(q) N(p) \longrightarrow \gamma\left(q^{\prime}\right) N\left(p^{\prime}\right)
$$

Leading order approximation

The usual kinematical parameters

$$
\begin{gathered}
P=\frac{p+p^{\prime}}{2}, \quad t=\left(p^{\prime}-p\right)^{2}, \quad Q^{2}=-q^{2}, \quad M^{2}=p^{2}=p^{\prime 2}, \quad x_{B}=\frac{Q^{2}}{2 p \cdot q} \\
\xi=\frac{\left(p-p^{\prime}\right) \cdot q}{2 P \cdot q} \approx \frac{p^{+}-p^{\prime+}}{p^{+}+p^{\prime+}} \approx \frac{x_{B}}{2-x_{B}}
\end{gathered}
$$

(light-cone coordinates with respect to $\bar{n} \propto P, n \propto q^{\prime}, n \cdot \bar{n}=1, v=v^{+} \bar{n}+v^{-} n+v_{\perp}$).

Coefficient function

- The hadronic part of the DVCS scattering amplitude is parametrized in terms of the Compton form factors (CFFs). Leading twist: $\mathcal{H}, \mathcal{E}, \widetilde{\mathcal{H}}, \widetilde{\mathcal{E}}$.
- \mathcal{H} gives generally dominant contribution to observables, e.g. $\sigma_{\mathrm{DVCS}} \propto \xi^{2}|\mathcal{H}|^{2}$ at small ξ.
- CFFs factorize in terms of GPDs, e.g.

$$
\begin{aligned}
& \mathcal{H}=\sum_{q=u, d, s} \frac{1}{\xi} \int_{-1}^{1} d x C_{q}(x / \xi, Q, \mu) H_{q}(x, \xi, t, \mu) \\
&+\frac{1}{\xi^{2}} \int_{-1}^{1} d x C_{g}(x / \xi, Q, \mu) H_{g}(x, \xi, t, \mu)
\end{aligned}
$$

- Expansion in α_{s}

$$
\begin{aligned}
C_{q} & =C_{q}^{(0)}+\frac{\alpha_{s}}{4 \pi} C_{q}^{(1)}+\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} C_{q}^{(2)}+O\left(\alpha_{s}^{3}\right) \\
C_{g} & =\frac{\alpha_{s}}{4 \pi} C_{g}^{(1)}+\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} C_{g}^{(2)}+O\left(\alpha_{s}^{3}\right) .
\end{aligned}
$$

The contribution from $C_{q}^{(2)}$ and $C_{g}^{(2)}$ are subject of this talk.

- Example diagrams

- Many diagrams are trivially related by crossing symmetry. Need to calculate ~ 70 diagrams which are not trivially related.
- Steps are as follows:
\Rightarrow Graph generation (qgraf)
\Rightarrow Apply Feynman rules and trace projection (FORM)
\Rightarrow Integration-by-parts reduction (FIRE) to 12 (scalar) master integrals
\Rightarrow Calculation of master integrals using method of differential equations. Fortunately there have been no new master integrals other than the ones appearing in the non-singlet case, they have been calculated in [Gao:2021iqq].
- Non-singlet CF in $\overline{\mathrm{MS}}$ has been calculated [Braun:2020yib] using conformal symmetry. We redid the calculation by computation of Feynman diagrams and confirmed the result.
- Need to calculate also "Infrared subtractions" (relevant starting at two-loop), which involve convolution of CF (including ϵ^{1} terms) with one-loop Z-factor (\Leftarrow get from evolution kernel [Braun:2019qtp]), e.g.

$$
\int_{-1}^{1} \frac{d x}{\xi} C_{q}(x / \xi, Q, \mu) H_{q, \text { parton }}(x, \xi, t, \mu) \supset \alpha_{s}^{2} \int_{-1}^{1} \frac{d x}{\xi} \epsilon C_{q}^{(1,1)}(x / \xi) \frac{1}{\epsilon} H_{q, \text { parton }}^{(1,-1)}(x, \xi)
$$

gives a finite contribution to the CF. Convolutions calculated with HyperInt program.

- All infrared singularities have to cancel such that the CF is finite

$$
\begin{aligned}
\underbrace{\mathcal{H}_{\text {parton }}}_{\text {IR divergent }}= & \int_{-1}^{1} \frac{d x}{\xi} \underbrace{C_{q}(x / \xi, Q, \mu)}_{\text {finite }} \underbrace{H_{q, \text { parton }}(x, \xi, t, \mu)}_{\text {IR divergent }} \\
& +\int_{-1}^{1} \frac{d x}{\xi^{2}} \underbrace{C_{g}(x / \xi, Q, \mu)}_{\text {finite }} \underbrace{H_{g, \text { parton }}(x, \xi, t, \mu)}_{\text {IR divergent }}
\end{aligned}
$$

where LHS and RHS are considered renormalized.

- There is mixing between quark and gluon terms \Rightarrow a highly non-trivial check!

Sample of explicit expression

$H_{i, j, \ldots}$ are harmonic polylogarithms and $\bar{z}=1-z$.

$$
\begin{aligned}
& C_{g}^{(2)}(x / \xi)=\left.\left(\sum_{q} e_{q}^{2}\right) T_{F}\left[C_{F} \top^{\left(C_{F}\right)}(z)+C_{A} \top^{\left(C_{A}\right)}(z)\right]\right|_{z=\frac{1}{2}(1-x / \xi)}, \\
\mathrm{T}^{\left(C_{F}\right)}(z)= & \frac{1}{z^{2} \bar{z}^{2}}\left\{z ^ { 2 } \left(-H_{2,1}(z)+2 H_{2,2}(z)-\frac{23}{2} H_{3,0}(z)-\frac{17}{2} H_{2,0,0}(z)-11 H_{2,1,0}(z)-\frac{23}{2} H_{0,0,0,0}(z)\right.\right. \\
& -9 H_{\left.1,0,0,0(z)-9 H_{1,1,0,0}(z)\right)+\frac{1}{2}\left(-3 z^{2}+16 z+\pi^{2}(1-2 z(z+1))-13\right) H_{1,1}(z)} \\
& +2\left(z^{4}-2 z^{3}+z\right)\left(H_{1,2}(z)-H_{2,0}(z)\right)-\frac{1}{4}\left(\left(6+7 \pi^{2}\right) z+20\right) z H_{0,0}(z)+\frac{5}{2}(z+1) z H_{0,0,0}(z) \\
& +\left[-\frac{1}{4} \bar{z}(z(8 z-3)+3)-\frac{1}{6} \pi^{2}(z(7 z+4)-2)\right] H_{1,0}(z)+\frac{1}{4}\left[z^{2}(-8(z-2) z-5)+2 z-5\right] H_{1,1,0}(z) \\
& +\bar{z}^{2}\left(H_{1,0,0}(z)-\frac{5}{2} H_{1,1,2}(z)+\frac{1}{2} H_{1,2,1}(z)-\frac{5}{2} H_{1,1,1,1}(z)-2 H_{1,3}(z)\right) \\
& +\frac{5}{2} \bar{z}(z-2) H_{1,1,1}(z)+(2-z(7 z+4))\left(H_{1,2,0}(z)+H_{1,1,1,0}(z)\right)-9 z^{2} H_{4}\left(-\frac{\bar{z}}{z}\right)+2 z^{2} H_{4}(z) \\
& -\frac{1}{12} z H_{0}(z)\left[24 z(z+\zeta(3))-6(23 z+9)+\pi^{2}(z(4(z-2) z+3)+5)\right] \\
& +\frac{1}{24} \bar{z} H_{1}(z)\left[12(z(4 z-\zeta(3)+15)+\zeta(3)-28)+\pi^{2}(3-z(8 \bar{z} z+9))\right] \\
& -\frac{1}{12}\left[z\left(24 z+22 \pi^{2}-39\right)+24\right] z H_{2}(z)+\frac{1}{4}[z(8(z-2) z+5)+8] z H_{3}(z)+6 z^{4} \zeta(3) \\
& \left.+\frac{1}{3} z^{3}\left(\pi^{2}-36 \zeta(3)\right)-\frac{1}{360} z^{2}\left[90(\zeta(3)+36)+195 \pi^{2}+103 \pi^{4}\right]+z\left(6 \zeta(3)+9+\frac{\pi^{2}}{3}\right)\right\}
\end{aligned}
$$

Plots of CF

Sample GPD model

- We used the model by Goloskokov and Kroll (GK) [Goloskokov:2006hr] in order to estimate the size of the NNLO correction to \mathcal{H}.
- GK model is obtained from the double distribution (DD) ansatz (D-term is neglected)

$$
\begin{aligned}
& F(\beta, \alpha, t)=e^{\left(b+\alpha^{\prime} \ln (1-|\beta|)\right)\left(t-t_{\text {min }}\right)} f(\beta) h(\beta, \alpha) \\
& H(x, \xi, t)=\int_{\{|\alpha|+|\beta| \leq 1\}} d \alpha d \beta F(\beta, \alpha, t) \delta(x-\beta-\xi \alpha)
\end{aligned}
$$

- We refited the PDF parameters to HERA20PDF NNLO data.

Size of correction to CFF \mathcal{H} for each parton

$$
\mu=Q=2 \mathrm{GeV}, t=t_{\mathrm{min}}
$$

PRELIMINARY

Size of correction to CFF \mathcal{H} total

$$
\mu=Q=2 \mathrm{GeV}, t=t_{\mathrm{min}}
$$

PRELIMINARY

- Large correction when adding up the CFFs corresponding to each parton! This happens already at NLO.
- Contribution of quarks is positive while imaginary part of gluon contribution is negative \rightarrow cancellation, e.g. at $\xi=10^{-3}$:

$$
\underbrace{268+1344 i}_{=\mathcal{H}_{u}}+\underbrace{77+338 i}_{=\mathcal{H}_{d}}+\underbrace{71+258 i}_{=\mathcal{H}_{s}}+\underbrace{170-1275 i}_{=\mathcal{H}_{g}}=585+664 i
$$

- We have calculated the two-loop vector singlet CF for DVCS using computer algebra methods for calculating the Feynman diagrams.
- Size of NNLO radiative corrections strongly depends on the GPD model.
- Including three loop evolution is needed to complete NNLO program \rightarrow three loop singlet evolution is not known yet, but will be available soon.
- Possible near future extensions: calculate two-loop axial singlet CF, calculate $\sim n_{f}$ contribution of three-loop to estimate size of N3LO correction, produce public computer code for NNLO predictions of leading twist DVCS.

