Modified TMD Factorization and Sub-leading Power Corrections

Sergio Leal Gómez work in preparation with Massimiliano Procura (University of Vienna)

XXIX International Workshop on Deep-Inelastic Scattering and Related Subjets Santiago de Compostela, Spain
04.05.2022

Outline

(1) Introduction
(2) TMD factorization in SCET
(3) Power corrections
(4) Summary \& Outlook

Power corrections in Drell-Yan

Partonic cross section in Drell-Yan process
$\frac{d \sigma}{d Q^{2} d y d \mathbf{q}_{T}^{2}}=\sigma^{\text {Born }}+$
$\frac{1}{\mathbf{q}_{T}^{2}} \sum_{n=1} \alpha_{s}^{n} \frac{d \sigma^{[n,-1]}}{d Q^{2} d y d \mathbf{q}_{T}^{2}}+\delta^{(2)}\left(\mathbf{q}_{T}\right) \sum_{n=1} \alpha_{s}^{n} \frac{d \sigma^{[n, 0]}}{d Q^{2} d y d \mathbf{q}_{T}^{2}}+\frac{1}{Q^{2}} \sum_{n=1}\left(\frac{\mathbf{q}_{T}^{2}}{Q^{2}}\right)^{m} \alpha_{s}^{n} \frac{d \sigma^{[n, m]}}{d Q^{2} d y d \mathbf{q}_{T}^{2}}$

- $\frac{d \sigma^{[n,-1]}}{d Q^{2} d y d \mathbf{q}_{T}^{2}}$ and $\frac{d \sigma^{[n, 0]}}{d Q^{2} d y d \mathbf{q}_{T}^{2}}$ are leading power contributions. Well studied in TMD factorization Scimemi et al. JHEP 07 (2012), 002; Becher and Neubert, EPJC 71 (2011), 1665
- $\frac{d \sigma^{[n, m]}}{d Q^{2} d y d \mathbf{q}_{T}^{2}}$ are the power suppressed corrections: kinematic, Operator Product Expansion, SCET factorization

Approach

We use ideas from $\boldsymbol{q}_{\boldsymbol{T}}$-subtraction method: Catani et al. Nucl. Phys. B 596 (2001), 299-312;
Catani et al. Phys. Lett. B 696 (2011), 207-213; Catani et. al. Phys. Rev. Lett. 98 (2007), 222002

$$
d \sigma=\lim _{q_{T} \rightarrow 0} d \sigma+\left[d \sigma-\lim _{q_{T} \rightarrow 0} d \sigma\right]
$$

- In our case the first term is well described by TMD factorization.
- It contains large logs (due to the expansion) that need to be resummed. TMD formalism is quite convenient for this task.
- The second term includes our power corrections as the difference at partonic level and fixed order.
- Typically the second term is computed using Monte-Carlo event generators. We provide an analytical computation at NLO+NLL.
- We modified the TMD factorization formula for DY to include this second term.

TMD factorization in SCET

- The emerging partons are not parallel to the incoming hadron and are off-shell.
- The partons from the TMDPDFs have a non-negligible transverse momentum $\mathbf{p}_{T a(b)}$.
- All ingredients can be written as matrix element of QFT operators, which can be further matched onto collinear PDF. Vladimirov et al. EPJC 78 (2018) no.10, 802
- The transverse momentum has to be smaller than the collinear component of the emerging parton, i.e. we
 are in the limit $q_{T}^{2} / Q^{2} \ll 1$.

$$
\begin{aligned}
& \frac{d \sigma_{h_{A} h_{B} \rightarrow I^{\prime} x}^{\mathrm{SCET}}}{d Q^{2} d y d q_{T}^{2}}=\sum_{c} \sigma^{\mathrm{Born}} H\left(\alpha_{S}, Q^{2}\right) \int \frac{d^{2} \mathbf{b}_{T}}{(2 \pi)^{2}} e^{i \mathbf{b}_{T} \cdot \mathbf{q}_{T}} F_{c \leftarrow h_{A}}\left(\alpha_{S}, x_{A}, b_{T}^{2}\right) F_{\bar{c} \leftarrow h_{B}}\left(\alpha_{S}\left(Q^{2}\right), b_{T}^{2}, x_{B}\right)+Y \\
& \frac{d F_{a \leftarrow h_{A}}\left(\alpha_{S}\left(\mu^{2}\right), b_{T}^{2}, x_{A}, \mu^{2}, \zeta\right)}{d \ln \mu^{2}}=\frac{1}{2} \gamma_{q}\left(\alpha_{S}\left(\mu^{2}\right), \mu^{2}, \zeta\right) F_{a \leftarrow h_{A}}\left(\alpha_{S}\left(\mu^{2}\right), b_{T}^{2}, x_{A}, \mu^{2}, \zeta\right) \\
& \frac{d F_{a \leftarrow h_{A}}\left(\alpha_{S}\left(\mu^{2}\right), b_{T}^{2}, x_{A}, \mu^{2}, \zeta\right)}{d \zeta}=-\mathcal{D}\left(\alpha_{S}\left(\mu^{2}\right), \mu^{2}, b_{T}^{2}\right) F_{a \leftarrow h_{A}}\left(\alpha_{S}\left(\mu^{2}\right), b_{T}^{2}, x_{A}, \mu^{2}, \zeta\right)
\end{aligned}
$$

Y includes the power corrections $\mathbf{q}_{T}^{2} / Q^{2}$ to the SCET factorization formula.
Collins et al. Nucl. Phys. B 250 (1985), 199-224; Collins et al. Phys. Rev. D 94 (2016) no.3, 034014

Sources of power corrections

A lot of work done so far in power corrections: Balitsky et al. JHEP 05 (2018), 150; Balitsky et al. JHEP 05 (2021), 046; Nefedov et al. Phys. Lett. B 790 (2019), 551-556; Ebert et al. 2112.07680 [hep-ph]; Luke et al. Phys. Rev. D 104 (2021) no.7, 076018, Beneke et al. JHEP 03 (2018), 001, Mulders et al. Nucl. Phys. B 667 (2003), 201-241.

- Kinematic corrections due to the definition of relevant variables four the process

$$
\text { DY: } \quad x_{A(B)}=\sqrt{\frac{Q^{2}+\mathbf{q}_{T}^{2}}{s}} e^{ \pm y}, \quad \text { SIDIS: } \quad \mathbf{q}_{T}^{2}=\frac{p_{\perp}^{2}}{z^{2}} \frac{1+\gamma^{2}}{1-\gamma^{2} \frac{p_{\perp}^{2}}{z^{2} Q^{2}}}
$$

- Matching TMDPDF(FF) onto PDF(FF)

Vladimirov et al. Eur. Phys. J. C 78 (2018) no.10, 802

$$
F_{a \leftarrow h_{A}}\left(\mathbf{b}_{T}, x\right)=\sum_{r, n}\left(\frac{\mathbf{b}_{T}}{M^{2}}\right)^{n} C_{a \leftarrow r}^{n}\left(\ln \mathbf{b}_{T}^{2} \mu^{2}, x\right) \otimes f_{r \leftarrow h_{A}}(x)
$$

- Corrections to the TMD factorization included in the Y-term

Computation at NLO+NLL

We compute

$$
\frac{d \sigma_{h_{A} h_{B} \rightarrow \|^{\prime} x}}{d Q^{2} d y d \mathbf{q}_{T}^{2}}=\frac{d \sigma_{h_{A} h_{B} \rightarrow \|^{\prime} x}^{\mathrm{SCET}}}{d Q^{2} d y d \mathbf{q}_{T}^{2}}+\left[\frac{d \sigma_{h_{A} h_{B} \rightarrow \|^{\prime} x}}{d Q^{2} d y d \mathbf{q}_{T}^{2}}-\frac{d \sigma_{h_{A} h_{B} \rightarrow \|^{\prime} x}^{\mathrm{SCET}}}{d Q^{2} d y d \mathbf{q}_{T}^{2}}\right]
$$

- The first term contains large logs due to the expansion in $\mathbf{q}_{T}^{2} /\left(Q^{2}+\mathbf{q}_{T}^{2}\right)$.
- We perform a NLO+NLL analytic computation of the second term.
- No need to regularized divergences using +-distributions
- The logarithmically enhanced contributions cancel out order by order in α_{s}.
- We seek for a modified factorization formula that at fixed order reproduces powers behaviour.

Modified Factorization Formula

$$
\begin{aligned}
& \frac{d \sigma_{h_{A} h_{B} \rightarrow I^{\prime} x}}{d Q^{2} d y d \mathbf{q}_{T}^{2}}= \\
& \sum_{a, b, c} \sigma_{c}^{\text {Born }} \int d^{2} \mathbf{p}_{T a} d^{2} \mathbf{p}_{T b} d^{2} \mathbf{q}_{T}^{\prime} \delta^{(2)}\left(\mathbf{q}_{T}-\mathbf{p}_{T a}-\mathbf{p}_{T b}-\mathbf{q}_{T}^{\prime}\right) \int_{x_{A}}^{1} \frac{d z_{a}}{z_{a}} \int_{x_{B}}^{1} \frac{d z_{b}}{z_{b}} \theta\left(\frac{\left(z_{a}-x_{A}\right)\left(z_{b}-x_{B}\right)}{x_{A} x_{B}}-\frac{\mathbf{q}_{T}^{2 \prime}}{Q^{2}+\mathbf{q}_{T}^{2}}\right) \\
& \tilde{H}_{c \leftarrow a, \bar{c} \leftarrow b}\left(\alpha_{s}, Q^{2}, \frac{x_{A}}{z_{a}}, \frac{x_{B}}{z_{b}}, \mathbf{q}_{T}^{2 \prime}, \mathbf{q}_{T}^{2}\right) F_{a \leftarrow h_{A}}\left(\alpha_{s}, z_{a}, \mathbf{p}_{T a}^{2}\right) F_{b \leftarrow h_{B}}\left(\alpha_{S}, z_{a}, \mathbf{p}_{T b}^{2}\right)
\end{aligned}
$$

- The origin of θ is pure kinematic.
- The coefficient \tilde{H} is free of large logarithm contributions. All of them are absorbed by the TMDPDF.
- The TMD operators are unchanged, its evolution remains the same. $\zeta=\mu_{F}^{2}=\mu_{R}^{2}=\frac{\left(Q^{2}+\mathbf{q}_{T}^{2}\right) z_{a(b)}}{{ }^{x} A(B)}$
- $x_{A(B)}=\sqrt{\frac{Q^{2}+\mathbf{q}_{T}^{2}}{s}} e^{ \pm y}$

Power corrections vs Leading power

Preliminary

$0.4 \leq|y| \leq 0.8,76.18 \mathrm{GeV} \leq Q \leq 106.19 \mathrm{GeV}$.
Bigger than electroweak corrections Grazzini et al. Phys. Rev. Lett. 128 (2022) no.1, 012002;
Sborlini et al. JHEP 08 (2018), 165

Power corrections vs Leading power

Next steps in the numerical analysis

- The convolution in $\mathbf{p}_{T a}$ and $\mathbf{p}_{T b}$ is done from $-\infty$ to ∞. We need to introduce a cut off to perform the numerical integral.
- The code is to be optimized for this cut-off such that the numerical contribution above is truly negligible.
- So far we have used $p_{T a}^{\text {cut-off }}=p_{T b}^{\text {cut-off }}=\sqrt{Q^{2}+\mathbf{q}_{T}^{2}} \cdot 0.25$. A better choice would be $p_{T a}^{\text {cut-off }}=p_{T b}^{\text {cut-off }}=\sqrt{Q^{2}+\mathbf{q}_{T}^{2}} \sqrt{\frac{z_{a(b)}}{x_{A(B)}}} \cdot 0.25$

Summary \& Outlook

SUMMARY

- At small $\mathbf{q}_{T}^{2} / Q^{2}$ our factorization formula reproduces TMD factorization.
- At $\left|\mathbf{q}_{T}\right|=Q \cdot 0.30$ we start to appreciate the effects of power corrections.
- The power corrections increase the cross section at large q_{T}, making it more close the experimental data.
- Electroweak corrections are subleading compared to power corrections Grazzini et al. Phys. Rev. Lett. 128 (2022) no.1, 012002; Sborlini et al. JHEP 08 (2018), 165

OUTLOOK

- Improvement of the code for integration in \mathbf{p}_{T} of the TMDPDF.
- Extension to $e^{+} e^{-}$to jets/hadrons.
- Study of polarized processes.
- New extraction of TMDPDFs.
- Inclusion of power suppressed terms in the matching of TMDs onto PDFs.

THANK YOU FOR YOUR ATTENTION

Backup

LARGE LOGS

- Momentum Space \mathbf{q}_{T}

$$
\frac{d \sigma}{d Q^{2} d y d \mathbf{q}_{T}^{2}} \sim c_{1}^{[1]} \frac{\alpha_{s}}{\mathbf{q}_{T}^{2}} \log \frac{Q^{2}}{\mathbf{q}_{T}^{2}}+\frac{\alpha_{s}^{2}}{\mathbf{q}_{T}^{2}}\left(c_{1}^{[2]} \log \frac{Q^{2}}{\mathbf{q}_{T}^{2}}+c_{2}^{[2]} \log ^{2} \frac{Q^{2}}{\mathbf{q}_{T}^{2}}+c_{3}^{[2]} \log ^{3} \frac{Q^{2}}{\mathbf{q}_{T}^{2}}\right)+\cdots
$$

- Impact parameter space \mathbf{b}_{T}

$$
\begin{aligned}
& \frac{d \sigma}{d Q^{2} d y d \mathbf{b}_{T}^{2}} \sim \alpha_{s}\left(c_{0}^{[1]} \log \frac{Q^{2} \mathbf{b}_{T}^{2}}{4 e^{-2 \gamma_{E}}}+c_{1}^{[1]} \log ^{2} \frac{Q^{2} \mathbf{b}_{T}^{2}}{4 e^{-2 \gamma_{E}}}\right)+ \\
& \alpha_{s}^{2}\left(c_{0}^{[2]} \log \frac{Q^{2} \mathbf{b}_{T}^{2}}{4 e^{-2 \gamma_{E}}}+c_{1}^{[2]} \log ^{2} \frac{Q^{2} \mathbf{b}_{T}^{2}}{4 e^{-2 \gamma_{E}}}+c_{2}^{[2]} \log ^{3} \frac{Q^{2} \mathbf{b}_{T}^{2}}{4 e^{-2 \gamma_{E}}}+c_{3}^{[2]} \log ^{4} \frac{Q^{2} \mathbf{b}_{T}^{2}}{4 e^{-2 \gamma_{E}}}\right)+\cdots
\end{aligned}
$$

Small \mathbf{q}_{T} Expansion at NLO.

Using the methods presented in Bacchetta et al. JHEP 08 (2008), 023; Soper et al. Phys. Rev. D 54 (1996), 1919-1935

$$
\begin{aligned}
& \delta\left(\left(p_{a}-p_{b}-q\right)^{2}\right)= \\
& \frac{1}{Q^{2}+\mathbf{q}_{T}^{2}}\left[\frac{1}{\left(1-x_{a}\right)_{+}} \delta\left(1-x_{b}\right)+\frac{1}{\left(1-x_{a}\right)_{+}} \delta\left(1-x_{a}\right)-\delta\left(1-x_{a}\right) \delta\left(1-x_{b}\right) \ln \frac{\mathbf{q}_{T}^{2}}{Q^{2}+\mathbf{q}_{T}^{2}}\right]+\mathcal{O}\left(\frac{\mathbf{q}_{T}^{2}}{Q^{2}}\right)
\end{aligned}
$$

