Observable for gluon Orbital Angular Momentum

Shohini Bhattacharya

BNL

4 May 2022

In Collaboration with:

Renaud Boussarie (CPHT, CNRS)

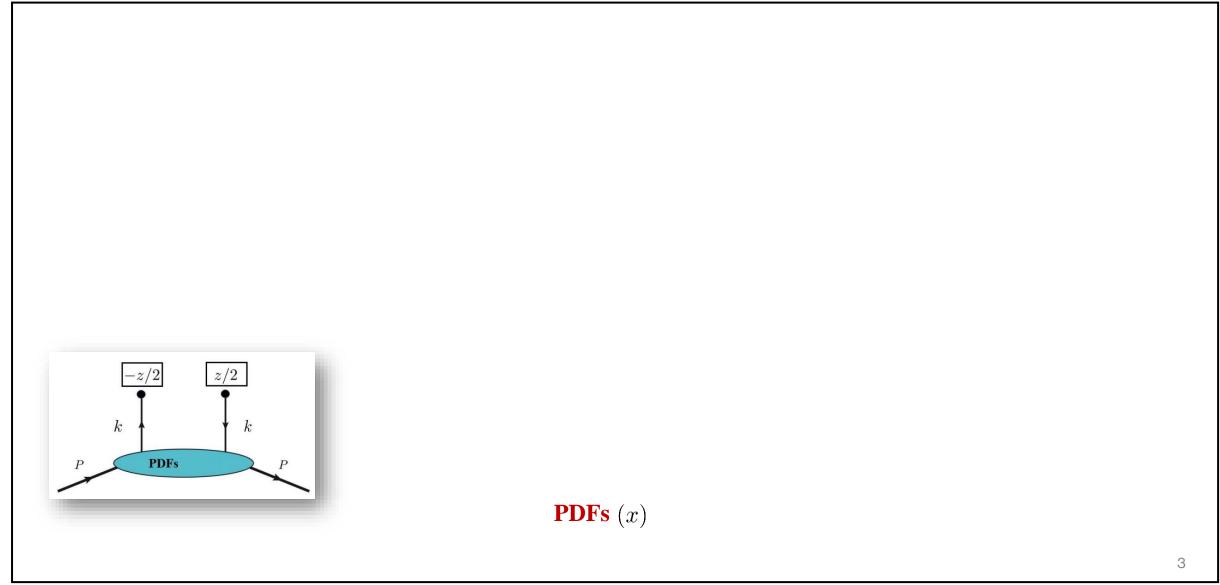
Yoshitaka Hatta (BNL)

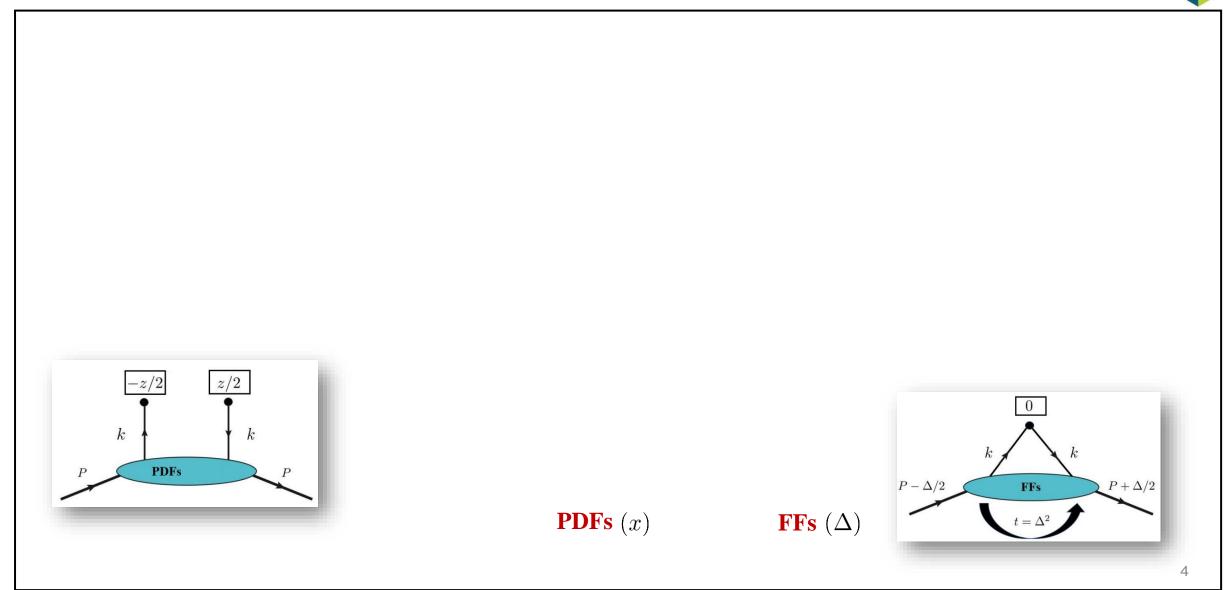
Based on:

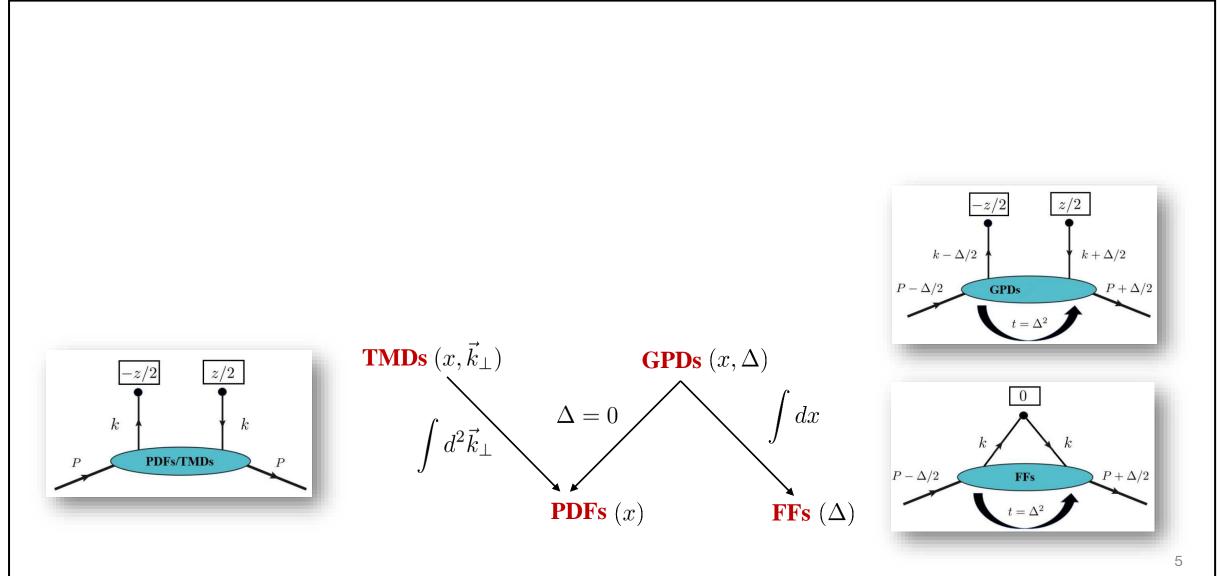
PRL 128, 182002 (arXiv: 2201.08709)

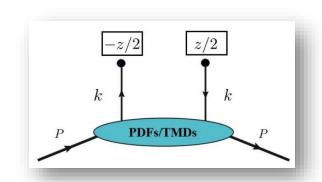
Outline

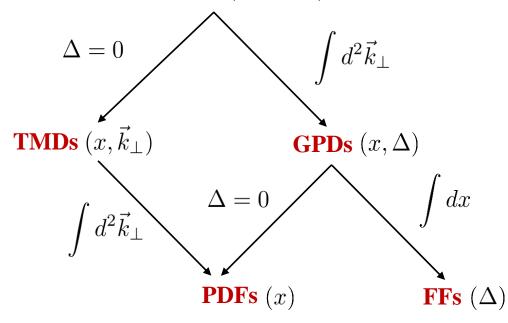
- Wigner distribution & gluon OAM
- Exclusive dijet production as a probe of gluon OAM
- Summary & Outlook

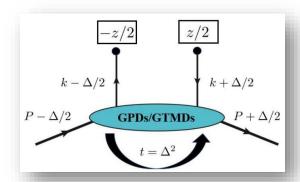


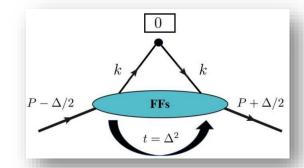












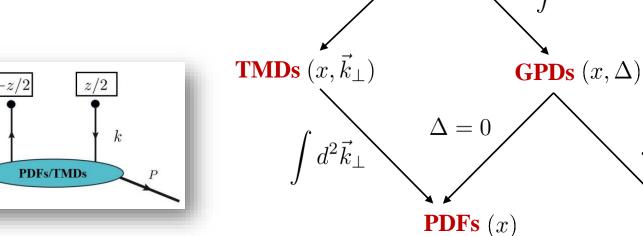
Wigner Distribution $(x, \vec{k}_{\perp}, \vec{b}_{\perp})$ (Belitsky, Ji, Yuan, 2003)

dx

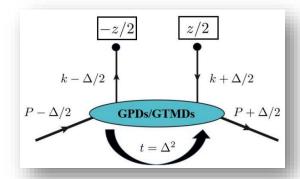
FFs (Δ)

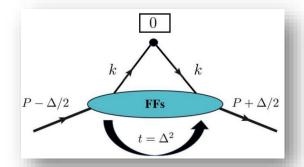
2-D Fourier Transform
$$(\vec{\Delta}_{\perp})$$
 $\xi = 0$

(Meissner, Metz, Schlegel, 2009) GTMDs $(x, \vec{k}_{\perp}, \Delta)$



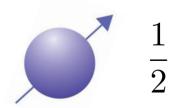
 $\Delta = 0$





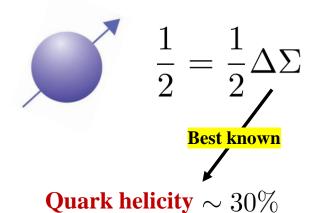
Jaffe-Manohar spin decomposition

• An incomplete story:



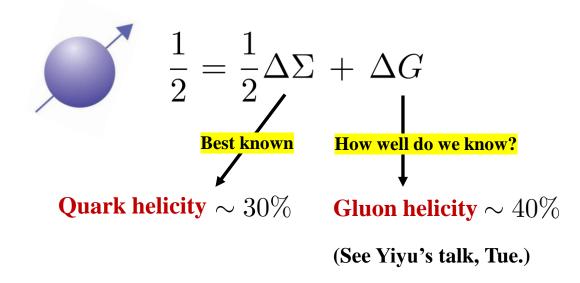
Jaffe-Manohar spin decomposition

• An incomplete story:



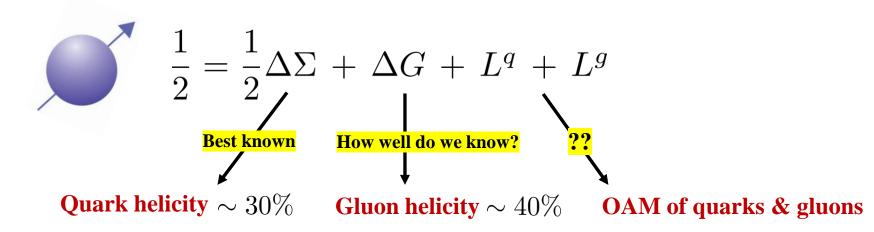
Jaffe-Manohar spin decomposition

• An incomplete story:



Jaffe-Manohar spin decomposition

An incomplete story:



Jaffe-Manohar spin decomposition

• An incomplete story:

An intuitive definition

NRQM:
$$\langle \mathcal{O} \rangle = \int dx \int dk \ \mathcal{O}(x,k) \ W(x,k)$$

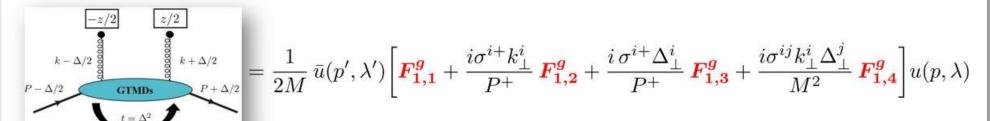
$$\Delta \Sigma + \Delta G + L^q + L^g$$

OAM as a moment of Wigner distribution

: (Lorce, Pasquini, 2011 / Hatta, 2011 / Ji, Xiong, Yuan, 2012)

$$L_z^{q,g} = \int dx \int d^2k_{\perp} d^2b_{\perp} (\vec{b}_{\perp} \times \vec{k}_{\perp})_z W^{q,g}(x, \vec{b}_{\perp}, \vec{k}_{\perp})$$

Parameterization of a GTMD correlator (unpolarized gluons):

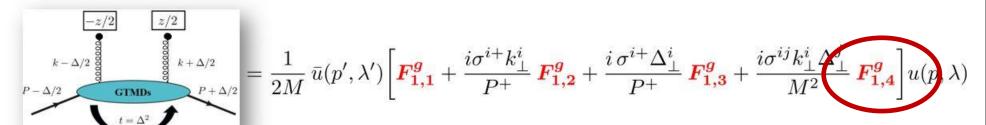


SB, Metz, Ojha, Tsai, Zhou, 1802.10550

• OAM as a moment of Wigner distribution/GTMD: (Lorce, Pasquini, 2011 / Hatta, 2011 / Ji, Xiting, Yuan, 2012)

$$L_z^{q,g} = \int dx \int d^2k_\perp d^2b_\perp (\vec{b}_\perp \times \vec{k}_\perp)_z \left\{ \int e^{i\vec{b}_\perp \cdot \vec{\Delta}_\perp} \left\{ \int e^{i\vec{b}_\perp \cdot \vec{\Delta}_\perp} \right\}_{P-\Delta/2} \right\}_{p-\Delta/2}$$
 GTMDs $P+\Delta/2$

Parameterization of a GTMD correlator (unpolarized gluons):



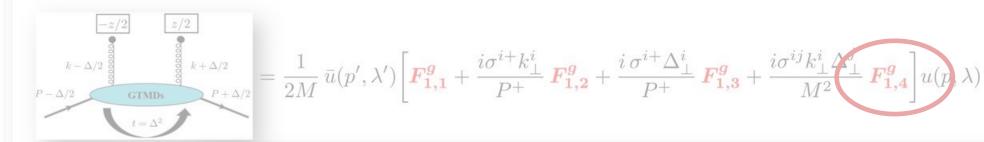
SB, Metz, Ojha, Tsai, Zhou, 1802.10550

• OAM as a moment of Wigner distribution/GTMD: (Lorce, Pasquini, 2011 / Hatta, 2011 / Ji, Xiong, Yuan, 2012)

$$L_z^{q,g} = -\int dx \int d^2\vec{k}_\perp \frac{\vec{k}_\perp^2}{M^2} F_{1,4}^{q,g}(\boldsymbol{x}, \vec{k}_\perp^2)$$

Relation between GTMD $F_{1,4}^{q,g}$ & OAM

Parameterization of a GTMD correlator (unpolarized gluons):



SB, Metz, Ojha,

Big question: Is this measurable?

OAM as a n

g, Yuan, 2012)

$$L_z^{q,g} = -\int dx \int d^2\vec{k}_\perp \frac{\vec{k}_\perp^2}{M^2} F_{1,4}^{q,g}(\boldsymbol{x}, \vec{k}_\perp^2)$$

Relation between GTMD $F_{1,4}^{q,g}$ & OAM

arXiv: 1601.01585 (2016)

Probing the Small-x Gluon Tomography in Correlated Hard Diffractive Dijet Production in DIS

Yoshitaka Hatta, Bo-Wen Xiao, and Feng Yuan

arXiv: 1601.01585 (2016)

Probing the Small-x Gluon Tomography in Correlated Hard Diffractive Production in DIS

Yoshitaka Hatta, Bo-Wen Xiao, and Feng Yuan and Feng Yuan

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji, 1,2 Feng Yuan,3 and Yong Zhao 1,3

arXiv: 1601.01585 (2016)

Probing the Small-x Gluon Tomography in Correlated Hard Diffractive Production in DIS

Yoshitaka Hatta, Bo-Wen Xiao, and Feng Yuan and Feng Yuan

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji,^{1,2} Feng Yuan,³ and Yong Zhao^{1,3}

arXiv: 1612.02445 (2016)

Gluon orbital angular momentum at small-x

Yoshitaka Hatta,¹ Yuya Nakagawa,¹ Bowen Xiao,² Feng Yuan,³ and Yong Zhao^{3,4,5}

arXiv: 1601.01585 (2016)

Probing the Small-x Gluon Tomography in Correlated Hard Diffractive Production in DIS

Yoshitaka Hatta, 1 Bo-Wen Xiao, 2 and Feng Yuan 3

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

arXiv: 1612.02445 (2016)

Xiangdong Ji,^{1,2} Feng Yuan,³ and Yong Zhao^{1,3}

Gluon orbital angular momentum at sr arXiv: 1802.10550 (2018)

Yoshitaka Hatta, Yuya Nakagawa, Bowen Xiao, Feng Yuan,

Exclusive double quarkonium production and generalized TMDs of gluons

Shohini Bhattacharya, Andreas Metz, Vikash Kumar Ojha, Jeng-Yuan Tsai, and Jian Zhou Zhou

arXiv: 1601.01585 (2016)

Probing the Small-x Gluon Tomography in Correlated Hard Diffractive Production in DIS

Yoshitaka Hatta, Bo-Wen Xiao, and Feng Yuan and Feng Yuan

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

arXiv: 1612.02445 (2016)

Xiangdong Ji,^{1,2} Feng Yuan,³ and Yong Zhao^{1,3}

Gluon orbital angular momentum at sr arXiv: 1802.10550 (2018)

Yoshitaka Hatta, Yuya Nakagawa, Bowen Xiao, Feng Yuan,

Exclusive double quarkonium production and generalized TMDs of gluons

Shohini Bhattacharya, Andreas Metz, Vikash Kumar Ojha, Jeng-Yuan Tsai, and Jian Zhou Zhou

arXiv: 1807.08697 (2018)

Probing the Weizsäcker-Williams gluon Wigner distribution in pp collisions

Renaud Boussarie, Yoshitaka Hatta, Bo-Wen Xiao, 3,4 and Feng Yuan⁵

arXiv: 1601.01585 (2016)

Probing the Small-x Gluon Tomography in Correlated Hard Diffractive Production in DIS

Yoshitaka Hatta, Bo-Wen Xiao, and Feng Yuan and Feng Yuan

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

arXiv: 1612.02445 (2016)

Manager 2 2 2 2 2

Xiangdong Ji,^{1,2} Feng Yuan,³ and Yong Zhao^{1,3}

Gluon orbital angular momentum at sr arXiv: 1802.10550 (2018)

Yoshitaka Hatta, Yuya Nakagawa, Bowen Xiao, Feng Yuan,

Exclusive double quarkonium production and generalized TMDs of gluons

arXiv: 1807.08697 (2018)

Probing the Weizsäcker-Williams gluon Wigner distribu

Renaud Boussarie, Yoshitaka Hatta, Bo-Wen Xiao, 3,4 an

arXiv: 1912.08182 (2019)

Probing the gluon Sivers function with an unpolarized target:
GTMD distributions and the Odderons

Renaud Boussarie,¹ Yoshitaka Hatta,¹ Lech Szymanowski,² and Samuel Wallon^{3, 4}

arXiv: 1601.01585 (2016)

Probing the Small-x Gluon Tomography in Correlated Hard Diffractive Production in DIS

Yoshitaka Hatta, Bo-Wen Xiao, and Feng Yuan and Feng Yuan

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji,^{1,2} Feng Yuan,³ and Yong Zhao^{1,3}

arXiv: 1612.02445 (2016)

Gluon orbital angular momentum at sr arXiv: 1802.10550 (2018)

Yoshitaka Hatta, Yuya Nakagawa, Bowen Xiao, Feng Yuan,

Exclusive double quarkonium production and generalized TMDs of gluons

arXiv: 1807.08697 (2018)

Probing the Weizsäcker-Williams gluon Wigner distribu

Renaud Boussarie, Yoshitaka Hatta, Bo-Wen Xiao, 3,4 an

arXiv: 1912.08182 (2019)

Probing the gluon Sivers function with an unpolarized target: GTMD distributions and the Odderons

The CMS Collaboration

See Michael's talk

Angular correlations in exclusive dijet photoproduction in ultra-peripheral PbPb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

ssarie,¹ Yoshitaka Hatta,¹ Lech Szymanowski,² and Samuel Wallon^{3, 4}

arXiv: 1601.01585 (2016)

Probing the Small-x Gluon Tomography in Correlated Hard Diffractive Production in DIS

Yoshitaka Hatta, 1 Bo-Wen Xiao, 2 and Feng Yuan 3

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji,^{1,2} Feng Yuan,³ and Yong Zhao^{1,3}

arXiv: 1612.02445 (2016)

Gluon orbital angular momentum at sr arXiv: 1802.10550 (2018)

Yoshitaka Hatta, Yuya Nakagawa, Bowen Xiao, Feng Yuan,

Exclusive double quarkonium production and generalized TMDs of gluons

arXiv: 1807.08697 (2018)

arXiv: 1912.08182 (2019)

Probing the Weizsäcker-Williams gluon Wigner distribu

Renaud Boussarie, Yoshitaka Hatta, Bo-Wen Xiao, 3,4 an

Probing the gluon Sivers function with an unpolarized target: GTMD distributions and the Odderons

The CMS Collaboration

See Michael's talk

arXiv: 2106.13466 (2021) See Ya-jin's talk, Thurs.

Angular correlations in exclusive dijet photoproduction in ultra-peripheral PbPb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

Probing the gluon tomography in photoproduction of di-pions

Yoshikazu Hagiwara, Cheng Zhang, Jian Zhou, and Ya-jin Zhou

arXiv: 1601.01585 (2016)

Probing the Small-x Gluon Tomography in Correlated Hard Diffractive Production in DIS

Yoshitaka Hatta, 1 Bo-Wen Xiao, 2 and Feng Yuan 3

arXiv: 1612.02445 (2016)

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji,^{1,2} Feng Yuan,³ and Yong Zhao^{1,3}

Gluon orbital angular momentum at sr arXiv: 1802.10550 (2018)

Yoshitak

We took a fresh look at this 2016 paper

n Zhou²

gluons

arXiv: 1807.08697 (2018)

arXiv: 1912.08182 (2019)

Probing the Weizsäcker-Williams gluon Wigner distribu

Renaud Boussarie, Yoshitaka Hatta, Bo-Wen Xiao, 3,4 an

Probing the gluon Sivers function with an unpolarized target: GTMD distributions and the Odderons

The CMS Collaboration

See Michael's talk

Angular correlations in exclusive dijet photoproduction in ultra-peripheral PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

arXiv: 2106.13466 (2021) See Ya-jin's talk, Thurs.

Probing the gluon tomography in photoproduction of di-pions

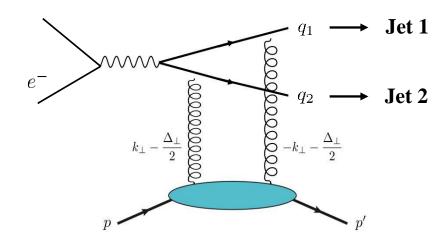
Yoshikazu Hagiwara, Cheng Zhang, Jian Zhou, and Ya-jin Zhou

Summary of the 2016 paper

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji,^{1,2} Feng Yuan,³ and Yong Zhao^{1,3}

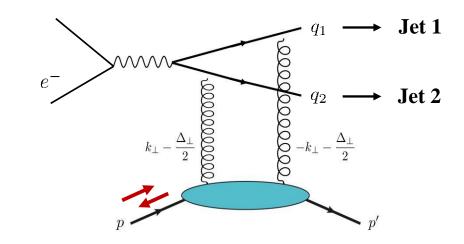


Summary of the 2016 paper

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji, 1,2 Feng Yuan,3 and Yong Zhao 1,3



Longitudinal single spin asymmetry (SSA):

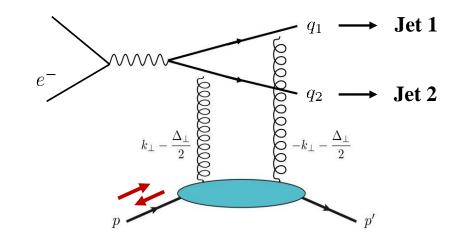
$$\frac{d\Delta\sigma}{dydQ^{2}d\Omega} = \sigma_{0}h_{p}\frac{2(\bar{z}-z)(q_{\perp}\times\Delta_{\perp})}{q_{\perp}^{2}+\mu^{2}} \left[16\beta(1-y)\Im\mathfrak{m}[F_{g}^{*}+4\xi^{2}\bar{\beta}F_{g}^{\prime*}][\mathcal{L}_{g}+8\xi^{2}\bar{\beta}\mathcal{L}_{g}^{\prime}] + (1+(1-y)^{2})\Im\mathfrak{m}[F_{g}^{*}+2\xi^{2}(1-2\beta)F_{g}^{\prime*}][\mathcal{L}_{g}+2\bar{\beta}(1/z\bar{z}-2)(\mathcal{L}_{g}+4\xi^{2}(1-2\beta)\mathcal{L}_{g}^{\prime})]\right]$$

Summary of the 2016 paper

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji, 1,2 Feng Yuan, 3 and Yong Zhao 1,3



Schematic structure of SSA (oversimplified):

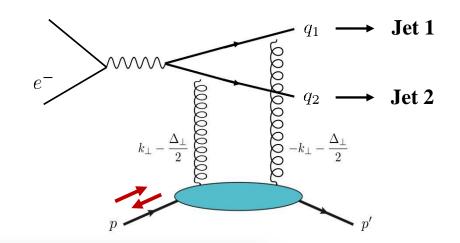
$$\frac{d\sigma}{dydQ^2d\Omega} \sim \sigma_0 h_p \sin(\phi_{q_{\perp}} - \phi_{\Delta_{\perp}}) (\overline{z} - z) \left[\mathfrak{Im} \left(F_g^*(\xi) \mathcal{L}_g(\xi) \right) \right]$$

Summary of the 2016 paper

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji, 1,2 Feng Yuan, 3 and Yong Zhao 1,3



Moment of GPD

Signature of OAM is sinusoidal angular modulation

$$q_{\perp} = q_{1\perp} - q_{2\perp}$$

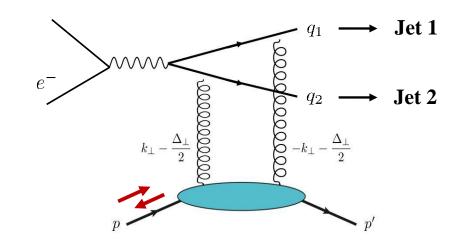
$$\frac{d\sigma}{dydQ^2d\Omega} \sim \sigma_0 h_p \sin(\phi_{q_{\perp}} - \phi_{\Delta_{\perp}})(\overline{z} - z) \left[\mathfrak{Im} \left(F_g^*(\xi) \mathcal{L}_g(\xi) \right) \right] \qquad \textbf{Moment of OAM}$$

Summary of the 2016 paper

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji, 1,2 Feng Yuan, 3 and Yong Zhao 1,3



Issues with SSA:

$$q_{\perp} = q_{1\perp} - q_{2\perp}$$

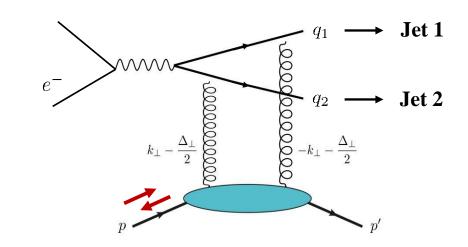
$$\frac{d\sigma}{dydQ^2d\Omega} \sim \sigma_0 h_p \sin(\phi_{q_{\perp}} - \phi_{\Delta_{\perp}}) (\overline{z} - z) \left[\mathfrak{Im} \left(F_g^*(\xi) \mathcal{L}_g(\xi) \right) \right]$$

Summary of the 2016 paper

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji, 1,2 Feng Yuan, 3 and Yong Zhao 1,3



Issues with SSA:

$$q_{\perp} = q_{1\perp} - q_{2\perp}$$

$$\frac{d\sigma}{dydQ^2d\Omega} \sim \sigma_0 h_p \sin(\phi_{q_{\perp}} - \phi_{\Delta}) \left((\overline{z} - z) \right) \operatorname{Im} \left(F_g^*(\xi) \mathcal{L}_g(\xi) \right)$$

SSA vanishes for symmetric jet configurations $z=\bar{z}=\frac{1}{2}$

Summary of the 2016 paper

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum Electron-Ion Collider

Xiangdong Ji, 1,2 Feng Yuan, 3 and Yong Zhao 1,3

Third pole at $x = \pm \xi$ \longrightarrow potentially dangerous for collinear factorization

"Compton Form Factor":
$$\mathcal{L}_g(\xi) = \int dx \frac{x^2 \xi L_g(x,\xi)}{(x^2 - \xi^2 + i\xi\epsilon)^3}$$

Issues with SSA:

$$q_{\perp} = q_{1\perp} - q_{2\perp}$$

$$\frac{d\sigma}{dydQ^2d\Omega} \sim \sigma_0 h_p \sin(\phi_{q_{\perp}} - \phi_{\Delta_{\perp}}) (\overline{z} - z) \left[\mathfrak{Im} \left(F_g^*(\xi | \mathcal{L}_g(\xi)) \right) \right]$$

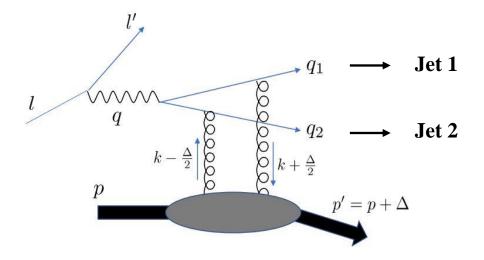
(See Cui, Hu, Ma, 1804.05293)

SSA vanishes for symmetric jet configurations $z = \bar{z} = \frac{1}{2}$

Our work

Signature of the gluon orbital angular momentum

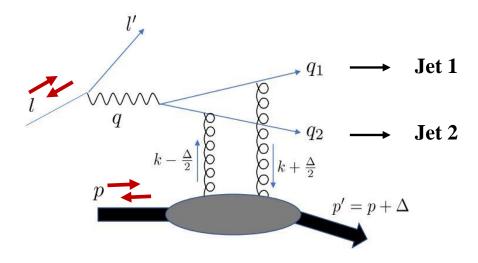
Shohini Bhattacharya, 1, * Renaud Boussarie, 2, † and Yoshitaka Hatta 1, 3, ‡



Our work

Signature of the gluon orbital angular momentum

Shohini Bhattacharya, 1, * Renaud Boussarie, 2, † and Yoshitaka Hatta 1, 3, ‡

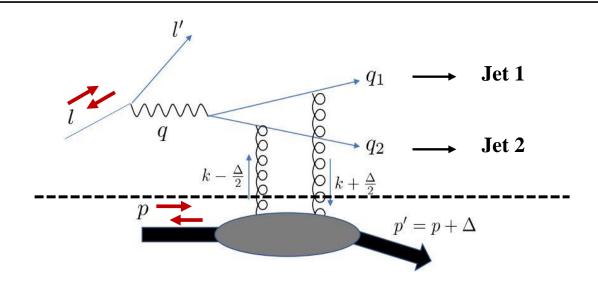


Distinct feature in our work

Double spin asymmetry (DSA):-

Both electron & incoming proton are longitudinally polarized

Scattering amplitude



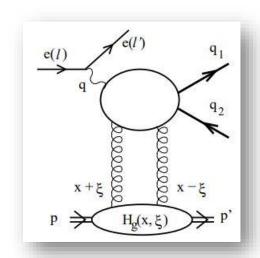
- 6 leading-order Feynman diagrams
- Scattering amplitude:

$$A \propto \int dx \int d^2k_{\perp} \, \mathcal{H}(x,\xi,q_{\perp},k_{\perp},\Delta_{\perp}) \, x f_g(x,\xi,k_{\perp},\Delta_{\perp})$$
 Hard part Soft part

Scattering amplitude

Twist expansion:

Twist-2 amplitude: Proportional to gluon GPD



Braun, Ivanov, 0505263

$$A_T^2 = \frac{ig_s^2 e_{em} e_q}{N_c} \frac{1}{q_\perp^2 + \mu^2} \left(\bar{u}(q_1) \not\in_\perp v(q_2) \right) \int dx \frac{1}{(x + \xi - i\varepsilon)(x - \xi + i\varepsilon)}$$

$$\times \left(1 + \frac{2\xi^2 (1 - 2\beta)}{(x + \xi - i\varepsilon)(x - \xi + i\varepsilon)} \right) \int d^2k_\perp x f_g(x, \xi, k_\perp, \Delta_\perp)$$

$$A_L^2 = \frac{ig_s^2 e_{em} e_q}{N_c} \frac{1}{(q_\perp^2 + \mu^2)^2} 4\xi z \overline{z} QW(\bar{u}(q_1)\gamma^- v(q_2)) \int dx \frac{1}{(x + \xi - i\varepsilon)(x - \xi + i\varepsilon)} \times \left(1 + \frac{4\xi^2 \bar{\beta}}{(x + \xi - i\varepsilon)(x - \xi + i\varepsilon)}\right) \int d^2k_\perp x f_g(x, \xi, k_\perp, \Delta_\perp)$$

Scattering amplitude

Twist expansion:

• Twist-3 amplitude: Proportional to gluon OAM

$$A_{T}^{3} = -\frac{ig_{s}^{2}e_{em}e_{q}}{N_{c}} \frac{2(\overline{z}-z)}{(q_{\perp}^{2}+\mu^{2})^{2}} \overline{u}(q_{1})\epsilon_{\perp} \cdot \gamma_{\perp}v(q_{2}) \int dx \frac{x}{(x^{2}-\xi^{2}+i\xi\varepsilon)^{2}} \left(2\xi + \frac{(2\xi)^{3}(1-2\beta)}{(x^{2}-\xi^{2}+i\xi\varepsilon)}\right) \int d^{2}k_{\perp}q_{\perp} \cdot \mathbf{k}_{\perp} x f_{g}(x,\xi,k_{\perp},\Delta_{\perp})$$

$$-\frac{ig_{s}^{2}e_{em}e_{q}}{N_{c}} \frac{2(2\xi)^{2}z\overline{z}W}{(q_{\perp}^{2}+\mu^{2})^{2}} \overline{u}(q_{1})\gamma^{-}v(q_{2}) \int dx \frac{x}{(x^{2}-\xi^{2}+i\xi\varepsilon)^{2}} \int d^{2}k_{\perp}\epsilon_{\perp} \cdot \mathbf{k}_{\perp} x f_{g}(x,\xi,k_{\perp},\Delta_{\perp})$$

$$A_{L}^{3} = \frac{ig_{s}^{2}e_{em}e_{q}}{N_{c}} \frac{16\xi^{2}(\overline{z} - z)z\overline{z}QW}{(q_{\perp}^{2} + \mu^{2})^{3}} \overline{u}(q_{1})\gamma^{-}v(q_{2}) \int dx \frac{x}{(x^{2} - \xi^{2} + i\xi\varepsilon)^{2}} \left(1 + \frac{8\xi^{2}(1 - \beta)}{(x^{2} - \xi^{2} + i\xi\varepsilon)}\right) \int d^{2}k_{\perp} q_{\perp} \cdot \mathbf{k_{\perp}} x f_{g}(x, \xi, k_{\perp}, \Delta_{\perp})$$

Scattering amplitude

Twist expansion:

• Twist-3 amplitude: Proportional to gluon OAM

$$A_T^3 = -\frac{ig_s^2 e_{em} e_q}{N_c} \frac{2(\overline{z} - z)}{(q_\perp^2 + \mu^2)^2} \overline{u}(q_1) \epsilon_\perp \cdot \gamma_\perp v(q_2) \left(\int dx \frac{x}{(x^2 - \xi^2 + i\xi\varepsilon)^2} \left(2\xi + \frac{(2\xi)^3 (1 - 2\beta)}{(x^2 - \xi^2 + i\xi\varepsilon)}\right)\right) d^2k_\perp q_\perp \cdot \mathbf{k}_\perp x f_g(x, \xi, k_\perp, \Delta_\perp)$$

$$-\frac{ig_s^2 e_{em} e_q}{N_c} \frac{2(2\xi)^2 z \overline{z} W}{(q_\perp^2 + \mu^2)^2} \overline{u}(q_1) \gamma^- v(q_2) \int dx \frac{x}{(x^2 - \xi^2 + i\xi\varepsilon)^2} \left(2\xi + \frac{(2\xi)^3 (1 - 2\beta)}{(x^2 - \xi^2 + i\xi\varepsilon)}\right) \int d^2k_\perp q_\perp \cdot \mathbf{k}_\perp x f_g(x, \xi, k_\perp, \Delta_\perp)$$
Factorization-breaking third poles at $x = \pm \xi$

$$A_{L}^{3} = \frac{ig_{s}^{2}e_{em}e_{q}}{N_{c}} \frac{16\xi^{2}(\overline{z}-z)z\overline{z}QW}{(q_{\perp}^{2}+\mu^{2})^{3}} \bar{u}(q_{1})\gamma^{-}v(q_{2}) \int dx \frac{x}{(x^{2}-\xi^{2}+i\xi\varepsilon)^{2}} \left(1 + \frac{8\xi^{2}(1-\beta)}{(x^{2}-\xi^{2}+i\xi\varepsilon)}\right) \int d^{2}k_{\perp} \ q_{\perp} \cdot \mathbf{k_{\perp}} \ xf_{g}(x,\xi,k_{\perp},\Delta_{\perp}) d^{2}k_{\perp} + \frac{1}{2}(x^{2}+\mu^{2})^{3} + \frac{1}{2}(x^{2}+\mu^{2})^{3}$$

Twist expansion:

Twist-3 amplitude: Proportion

Note: Gluon GPDs may contain $\sim \theta(\xi-|x|)(x^2-\xi^2)^2$ (See Radyushkin, 9805342)

Hence, integrals containing third poles are divergent

$$A_T^3 = -\frac{ig_s^2 e_{em} e_q}{N_c} \frac{2(\overline{z} - z)}{(q_\perp^2 + \mu^2)^2} \overline{u}(q_1) \epsilon_\perp \cdot \gamma_\perp v(q_2) \left(\int dx \frac{x}{(x^2 - \xi^2 + i\xi\varepsilon)^2} \left(2\xi + \frac{(2\xi)^3 (1 - 2\beta)}{(x^2 - \xi^2 + i\xi\varepsilon)} \right) \right) d^2k_\perp q_\perp \cdot \mathbf{k}_\perp x f_g(x, \xi, k_\perp, \Delta_\perp)$$

$$= \frac{ig_s^2 e_{em} e_q}{2(2\xi)^2 z \overline{z} W} \overline{u}(q_1) \gamma_\perp v(q_2) \int dx \frac{x}{(x^2 - \xi^2 + i\xi\varepsilon)^2} \left(2\xi + \frac{(2\xi)^3 (1 - 2\beta)}{(x^2 - \xi^2 + i\xi\varepsilon)} \right) \int d^2k_\perp q_\perp \cdot \mathbf{k}_\perp x f_g(x, \xi, k_\perp, \Delta_\perp)$$

Factorization-breaking third poles at $x=\pm \xi$

Scattering amplitude

Twist evnansion:

Switch off the factorization-breaking third poles by setting $z=\bar{z}=\frac{1}{2}$

$$A_{T}^{3} = -\frac{ig_{s}^{2}e_{em}e_{q}}{N_{c}} \frac{2(\overline{z}-z)}{q_{\perp}^{2} + \mu^{2})^{2}} \overline{u}(q_{1})\epsilon_{\perp} \cdot \gamma_{\perp}v(q_{2}) \int dx \frac{x}{(x^{2} - \xi^{2} + i\xi\varepsilon)^{2}} \left(2\xi + \frac{(2\xi)^{3}(1-2\beta)}{(x^{2} - \xi^{2} + i\xi\varepsilon)}\right) \int d^{2}k_{\perp}q_{\perp} \cdot \mathbf{k}_{\perp} x f_{g}(x,\xi,k_{\perp},\Delta_{\perp})$$

Recall: Not possible in SSA

Factorization-breaking third poles at $x=\pm \xi$

$$A_{L}^{3} = \frac{ig_{s}^{2}e_{em}e_{q}}{N_{c}} \frac{16\xi^{2}(\overline{z}-z)z\overline{z}QW}{(q_{\perp}^{2}+\mu^{2})^{3}} \bar{u}(q_{1})\gamma^{-}v(q_{2}) \int dx \frac{x}{(x^{2}-\xi^{2}+i\xi\varepsilon)^{2}} \left(1 + \frac{8\xi^{2}(1-\beta)}{(x^{2}-\xi^{2}+i\xi\varepsilon)}\right) \int d^{2}k_{\perp} q_{\perp} \cdot \frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}} x f_{g}(x,\xi,k_{\perp},\Delta_{\perp}) dx dx dx$$

Scattering amplitude

Main result (z = 1/2):

DSA is sensitive to OAM through an interference between L & T amplitudes:

$$\begin{split} \int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu} &= -\frac{2^{10} \pi^4}{N_c} h_l h_p \alpha_s^2 \alpha_{em} e_q^2 \frac{(1+\xi) \xi Q^2}{(q_{\perp}^2 + \mu^2)^2} |l_{\perp}| |\Delta_{\perp}| \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}}) \\ &\times \Re \left[\left\{ \mathcal{H}_g^{(1)*} - \frac{\xi^2}{1-\xi^2} \mathcal{E}_g^{(1)*} + \frac{4q_{\perp}^2}{q_{\perp}^2 + \mu^2} \left(\mathcal{H}_g^{(2)*} - \frac{\xi^2}{1-\xi^2} \mathcal{E}_g^{(2)*} \right) \right\} \mathcal{L}_g + \left(\mathcal{E}_g^{(1)*} + \frac{4q_{\perp}^2}{q_{\perp}^2 + \mu^2} \mathcal{E}_g^{(2)*} \right) \frac{\mathcal{O}}{2} \right] \end{split}$$

DSA does not vanish for symmetric jet configurations $z=\bar{z}=\frac{1}{2}$

Scattering amplitude

Main result (z = 1/2):

DSA is sensitive to OAM through an interference between L & T amplitudes:

$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^{*} A_{\nu} = -\frac{2^{10}\pi^{4}}{N_{c}} h_{l} h_{p} \alpha_{s}^{2} \alpha_{em} e_{q}^{2} \frac{(1+\xi)\xi Q^{2}}{(q_{\perp}^{2}+\mu^{2})^{2}} |l_{\perp}| |\Delta_{\perp}| \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

$$\times \Re \left[\left\{ \mathcal{H}_{g}^{(1)*} - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(1)*} + \frac{4q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \left(\mathcal{H}_{g}^{(2)*} - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(2)*} \right) \right\} \mathcal{L}_{g} + \left(\mathcal{E}_{g}^{(1)*} + \frac{4q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \mathcal{E}_{g}^{(2)*} \right) \frac{\mathcal{O}}{2} \right]$$

Scattering amplitude

Main result (z = 1/2):

DSA is sensitive to OAM through an interference between L & T amplitudes:

$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^{*} A_{\nu} = -\frac{2^{10}\pi^{4}}{N_{c}} h_{l} h_{p} \alpha_{s}^{2} \alpha_{em} e_{q}^{2} \frac{(1+\xi)\xi Q^{2}}{(q_{\perp}^{2}+\mu^{2})^{2}} |l_{\perp}||\Delta_{\perp}| \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

$$\times \mathfrak{Re} \left[\left\{ \mathcal{H}_{g}^{(1)*} - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(1)*} + \frac{4q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \left(\mathcal{H}_{g}^{(2)*} - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(2)*} \right) \right\} \mathcal{L}_{g} + \left(\mathcal{E}_{g}^{(1)*} + \frac{4q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \mathcal{E}_{g}^{(2)*} \right) \frac{\mathcal{O}}{2} \right]$$

$$\mathcal{L}_{g}(\xi) = \int_{-1}^{1} dx \frac{x^{2} L_{g}(x,\xi)}{(x-\xi+i\epsilon)(x+\xi-i\epsilon)} \mathcal{H}_{g}^{(2)}(\xi) = \int_{-1}^{1} dx \frac{\xi^{2} H_{g}(x,\xi)}{(x-\xi+i\epsilon)^{2}(x+\xi-i\epsilon)^{2}}$$

Scattering amplitude

Main result (z = 1/2):

DSA is sensitive to OAM through an interference between L & T amplitudes:

$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^{*} A_{\nu} = -\frac{2^{10}\pi^{4}}{N_{c}} h_{l} h_{p} \alpha_{s}^{2} \alpha_{em} e_{q}^{2} \frac{(1+\xi)\xi Q^{2}}{(q_{\perp}^{2}+\mu^{2})^{2}} |l_{\perp}| |\Delta_{\perp}| \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

$$\times \Re \left[\left\{ \mathcal{H}_{g}^{(1)*} - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(1)*} + \frac{4q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \left(\mathcal{H}_{g}^{(2)*} - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(2)*} \right) \right\} \mathcal{L}_{g} + \left(\mathcal{E}_{g}^{(1)*} + \frac{4q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \mathcal{E}_{g}^{(2)*} \right) \frac{\mathcal{O}}{2} \right]$$

"Compton Form Factors":

$$O(x,\xi) \equiv \int d^2 \widetilde{k}_{\perp} \frac{\widetilde{k}_{\perp}^2}{M^2} F_{1,2}(x,\xi,\widetilde{\Delta}_{\perp} = 0)$$

$$\mathcal{O}(\xi) = \int_{-1}^{1} dx \frac{xO(x,\xi)}{(x-\xi+i\epsilon)^2(x+\xi-i\epsilon)^2}$$

			U 1	
		Scattering ampli	tude	
Not the and of th	le o atomice			
Not the end of the	ne story:			

Helicity GPD

Scattering amplitude

Not the end of the story:

• Interference between unpolarized & helicity GPD (z=1/2):

$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu} A_{\nu} = \frac{2^{10} \pi^4}{N_c} h_l h_p \alpha_s^2 \alpha_{em} e_q^2 \frac{(1 - \xi^2) \xi Q^2}{(q_{\perp}^2 + \mu^2)^2} |l_{\perp}| |\Delta_{\perp}| \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}}) \mathfrak{Re} \left[\left(\mathcal{H}_g^{(1)*} - \frac{\xi^2}{1 - \xi^2} \mathcal{E}_g^{(1)*} \right) \left(\tilde{\mathcal{H}}_g^{(2)} - \frac{\xi^2}{1 - \xi^2} \tilde{\mathcal{E}}_g^{(2)} \right) \right]$$

Analogous contribution should enter SSA

Helicity GPD

Scattering amplitude

Not the end of the story:

• Interference between unpolarized & helicity GPD (z=1/2):

$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu} A_{\nu} = \frac{2^{10} \pi^4}{N_c} h_l h_p \alpha_s^2 \alpha_{em} e_q^2 \frac{(1 - \xi^2) \xi Q^2}{(q_{\perp}^2 + \mu^2)^2} |l_{\perp}| |\Delta_{\perp} \left(\cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}}) \mathfrak{R} \left[\left(\mathcal{H}_g^{(1)*} - \frac{\xi^2}{1 - \xi^2} \mathcal{E}_g^{(1)*} \right) \left(\tilde{\mathcal{H}}_g^{(2)} \right) - \frac{\xi^2}{1 - \xi^2} \tilde{\mathcal{E}}_g^{(2)} \right) \right]$$

Helicity contributes to the same angular modulation as that of OAM

Scattering amplitude

Not the end of the story:

• Interference between unpolarized & helicity GPD (z=1/2):

$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu} A_{\nu} = \frac{2^{10} \pi^4}{N_c} h_l h_p \alpha_s^2 \alpha_{em} e_q^2 \frac{(1 - \xi^2) \xi Q^2}{(q_{\perp}^2 + \mu^2)^2} |l_{\perp}| |\Delta_{\perp}| \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}}) \Re \left[\left(\mathcal{H}_g^{(1)*} - \frac{\xi^2}{1 - \xi^2} \mathcal{E}_g^{(1)*} \right) \left(\tilde{\mathcal{H}}_g^{(2)} - \frac{\xi^2}{1 - \xi^2} \tilde{\mathcal{E}}_g^{(2)} \right) \right]$$

DSA does not vanish for symmetric jet configurations $z = \bar{z} = \frac{1}{2}$

Switch off the factorization-breaking third poles by setting $z=\bar{z}=\frac{1}{2}$

$$\int dx \frac{H_g(x,\xi)}{(x^2 - \xi^2 + i\xi\epsilon)^3} \int dx \frac{x\tilde{H}_g(x,\xi)}{(x^2 - \xi^2 + i\xi\epsilon)^3}$$

Numerical estimate of cross section

$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu} = -\frac{2^{10}\pi^4}{N_c} h_l h_p \alpha_s^2 \alpha_{em} e_q^2 \frac{(1+\xi)\xi Q^2}{(q_{\perp}^2 + \mu^2)^2} |l_{\perp}| |\Delta_{\perp}| \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

$$\times \mathfrak{Re} \left[\left\{ \mathcal{H}_g^{(1)*} - \frac{\xi^2}{1-\xi^2} \mathcal{E}_g^{(1)*} + \frac{4q_{\perp}^2}{q_{\perp}^2 + \mu^2} \left(\mathcal{H}_g^{(2)*} - \frac{\xi^2}{1-\xi^2} \mathcal{E}_g^{(2)*} \right) \right\} \mathcal{L}_g + \left(\mathcal{E}_g^{(1)*} + \frac{4q_{\perp}^2}{q_{\perp}^2 + \mu^2} \mathcal{E}_g^{(2)*} \right) \frac{\mathcal{O}}{2} \right]$$

$$\begin{aligned} \textbf{Helicity} \quad & \int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu} A_{\nu} = \frac{2^{10} \pi^4}{N_c} h_l h_p \alpha_s^2 \alpha_{em} e_q^2 \frac{(1 - \xi^2) \xi Q^2}{(q_{\perp}^2 + \mu^2)^2} |l_{\perp}| |\Delta_{\perp}| \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}}) \\ & \times \mathfrak{Re} \left[\left(\mathcal{H}_g^{(1)*} - \frac{\xi^2}{1 - \xi^2} \mathcal{E}_g^{(1)*} \right) \left(\tilde{\mathcal{H}}_g^{(2)} - \frac{\xi^2}{1 - \xi^2} \tilde{\mathcal{E}}_g^{(2)} \right) \right] \end{aligned}$$

Numerical estimate of cross section

Ingredients for non-perturbative functions

Neglect contributions from $(E_g, \tilde{E}_g), F_{1,2}$ — Very simple formula

$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^{*} A_{\nu} = -\frac{2^{10}\pi^{4}}{N_{c}} h_{l} h_{p} \alpha_{s}^{2} \alpha_{em} e_{q}^{2} \frac{(1+\xi)\xi Q^{2}}{(q_{\perp}^{2}+\mu^{2})^{2}} |l_{\perp}| |\Delta_{\perp}| \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

$$\times \Re \left[\left\{ \mathcal{H}_{g}^{(1)*} - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(1)*} + \frac{4q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \left(\mathcal{H}_{g}^{(2)*} - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(2)*} \right) \right\} \mathcal{L}_{g} + \left(\mathcal{E}_{g}^{(1)*} + \frac{4q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \mathcal{E}_{g}^{(2)*} \right) \frac{\mathcal{O}}{2} \right]$$

$$\begin{aligned} \textbf{Helicity} & \int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu} A_{\nu} = \frac{2^{10} \pi^4}{N_c} h_l h_p \alpha_s^2 \alpha_{em} e_q^2 \frac{(1 - \xi^2) \xi Q^2}{(q_{\perp}^2 + \mu^2)^2} |l_{\perp}| |\Delta_{\perp}| \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}}) \\ & \times \mathfrak{Re} \left[\left(\mathcal{H}_g^{(1)*} - \frac{\xi^2}{1 - \xi^2} \mathcal{E}_g^{(1)*} \right) \left(\tilde{\mathcal{H}}_g^{(2)} - \frac{\xi^2}{1 - \xi^2} \tilde{\mathcal{E}}_g^{(2)} \right) \right] \end{aligned}$$

Numerical estimate of cross section

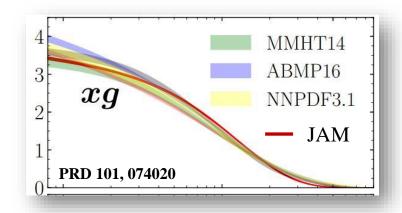
- Neglect contributions from $(E_g, \tilde{E}_g), F_{1,2}$ Very simple formula
- Model $(H_g,\, ilde{H}_g)$ according to the Double distribution approach (see for instance Radyushkin, 9805342)

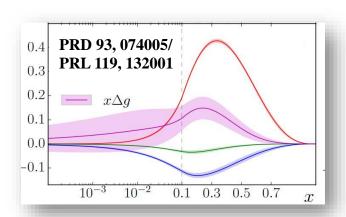
$$\begin{pmatrix} H_g(x,\boldsymbol{\xi}) \\ \tilde{H}_g(x,\boldsymbol{\xi}) \end{pmatrix} = \int_{-1}^1 d\beta \int_{-1+|\beta|}^{1-|\beta|} d\alpha \, \delta(\beta + \boldsymbol{\xi}\alpha - x) \times \frac{15}{16} \frac{[(1-|\beta|)^2 - \alpha^2]^2}{(1-|\beta|)^5} \times \begin{cases} \beta \, G(\beta) \\ \beta \, \Delta G(\beta) \end{cases}$$

Numerical estimate of cross section

- Neglect contributions from $(E_g, \tilde{E}_g), F_{1,2}$ Very simple formula
- Model (H_q, \tilde{H}_q) according to the Double distribution approach (see for instance Radyushkin, 9805342)

$$\begin{pmatrix} H_g(x, \boldsymbol{\xi}) \\ \tilde{H}_g(x, \boldsymbol{\xi}) \end{pmatrix} = \int_{-1}^1 d\beta \int_{-1+|\beta|}^{1-|\beta|} d\alpha \, \delta(\beta + \boldsymbol{\xi}\alpha - x) \times \frac{15}{16} \frac{[(1-|\beta|)^2 - \alpha^2]^2}{(1-|\beta|)^5} \times \begin{cases} \beta \, G(\beta) \\ \beta \, \Delta G(\beta) \end{cases}$$





Numerical estimate of cross section

- Neglect contributions from $(E_g, \tilde{E}_g), F_{1,2}$ Very simple formula
- Model $(H_g,\, ilde{H}_g)$ according to the Double distribution approach (see for instance Radyushkin, 9805342)
- Model for OAM:

Numerical estimate of cross section

- Neglect contributions from $(E_g, \tilde{E}_g), F_{1,2}$ Very simple formula
- Model $(H_g,\, ilde{H}_g)$ according to the Double distribution approach (see for instance Radyushkin, 9805342)
- Model for OAM:
 - 1. "OAM density": (Hatta, Yoshida, 1207.5332)

$$L_{can}^g(\mathbf{x}) = x \int_x^1 \frac{dx'}{x'^2} (H_g(x') + E_g(x')) - 2x \int_x^1 \frac{dx'}{x'^2} \Delta G(x') + \text{ genuine twist-three}$$

Numerical estimate of cross section

- Neglect contributions from $(E_g, \tilde{E}_g), F_{1,2}$ Very simple formula
- Model (H_q, \tilde{H}_q) according to the Double distribution approach (see for instance Radyushkin, 9805342)
- Model for OAM:
 - 1. "OAM density": (Hatta, Yoshida, 1207.5332)

$$L_{can}^g(\mathbf{x}) \approx x \int_x^1 \frac{dx'}{x'^2} (H_g(x') + E_g(x')) - 2x \int_x^1 \frac{dx'}{x'^2} \Delta G(x') + \text{ genuine twist-three}$$

$$H_g(x') = x' G(x') \qquad \text{Neglect } E_g$$

Numerical estimate of cross section

Ingredients for non-perturbative functions

- Neglect contributions from $(E_g, \tilde{E}_g), F_{1,2}$ Very simple formula
- Model (H_q, \tilde{H}_q) according to the Double distribution approach (see for instance Radyushkin, 9805342)
- Model for OAM:
 - 1. "OAM density": (Hatta, Yoshida, 1207.5332)

$$L_{can}^g(\mathbf{x}) \approx x \int_x^1 \frac{dx'}{x'^2} (H_g(x') + E_g(x')) - 2x \int_x^1 \frac{dx'}{x'^2} \Delta G(x') + \text{ genuine twist-three}$$

2. Use the Double distribution approach to construct $xL_g(x,\xi)$ from $xL_g(x)$ (GPD-like approach)

Numerical estimate of cross section

Realistic EIC kinematics

\sqrt{s} [GeV]	$oldsymbol{Q^2} \ [\mathrm{GeV^2}]$	$oldsymbol{y}$	ξ
	2.7		
120	4.8	0.7	$\lesssim 10^{-3}$
	10.0		

Focus on:
$$z = \bar{z} = \frac{1}{2}$$

Numerical estimate of cross section

Realistic EIC kinematics

\sqrt{s} [GeV]	$Q^2 \ [\mathrm{GeV}^2]$	y	ξ
120	2.7 4.8	$0.7 \qquad \lesssim 10^{-3}$	
	10.0		

Focus on:
$$z = \bar{z} = \frac{1}{2}$$

Cross section:

$$\frac{d\sigma}{dy dQ^2 d\phi_{l_{\perp}} dz dq_{\perp}^2 d^2 \Delta_{\perp}} = \frac{\alpha_{em} y}{2^{11} \pi^7 Q^4} \frac{\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu}}{(W^2 + Q^2)(W^2 - M_J^2) z \overline{z}}$$

Numerical estimate of cross section

Realistic EIC kinematics

\sqrt{s} [GeV]	$Q^2 \ [\mathrm{GeV}^2]$	y	ξ
	2.7		
120	4.8	0.7	$\lesssim 10^{-3}$

Focus on:

$$z = \bar{z} = \frac{1}{2}$$

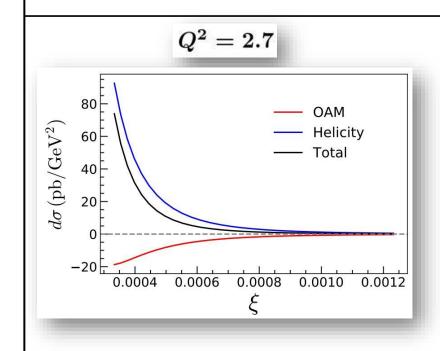
Study cross section as differential in the skewness variable

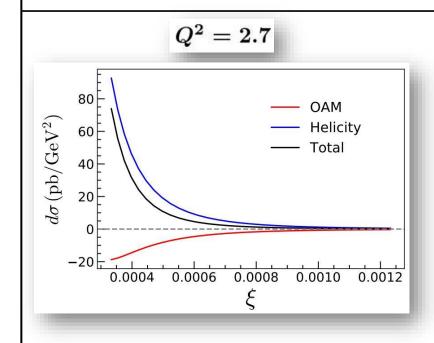
Cross section:

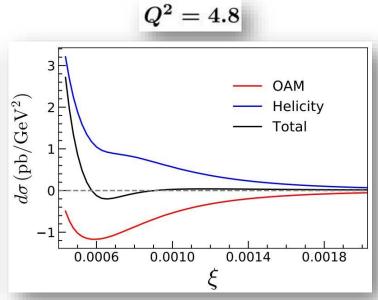
$$\frac{d\sigma}{dydQ^2d\phi_{l_{\perp}}dzdq_{\perp}^2d^2\Delta_{\perp}} = \frac{\alpha_{em}y}{2^{11}\pi^7Q^4}$$

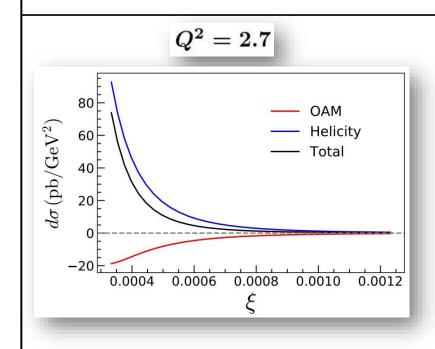
Relation between skewness & jet momenta:

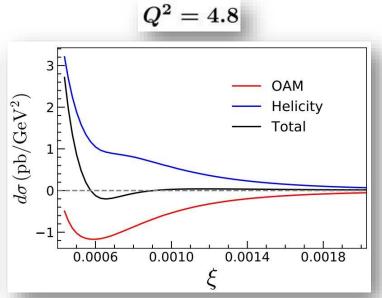
$$\xi = \frac{q_{\perp}^2 + z\bar{z}Q^2}{-q_{\perp}^2 + z\bar{z}(Q^2 + 2W^2)}$$

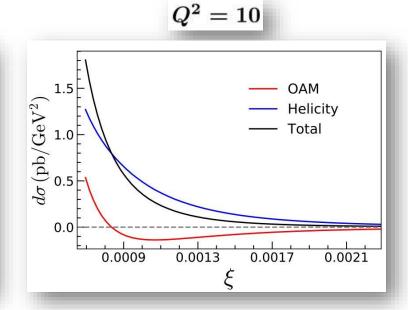






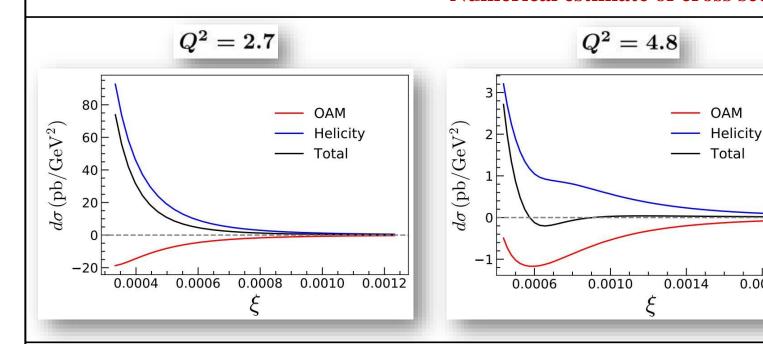


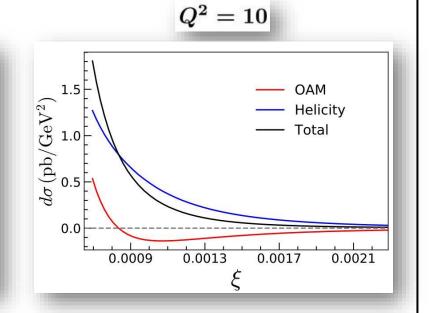




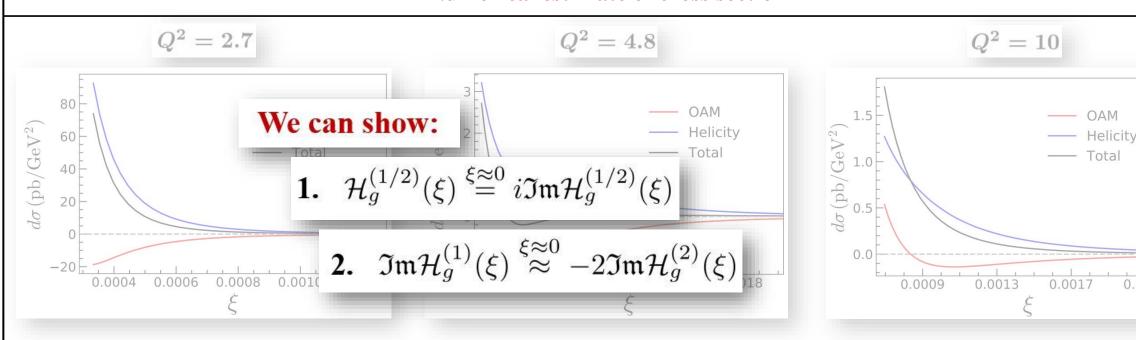
Numerical estimate of cross section

0.0018

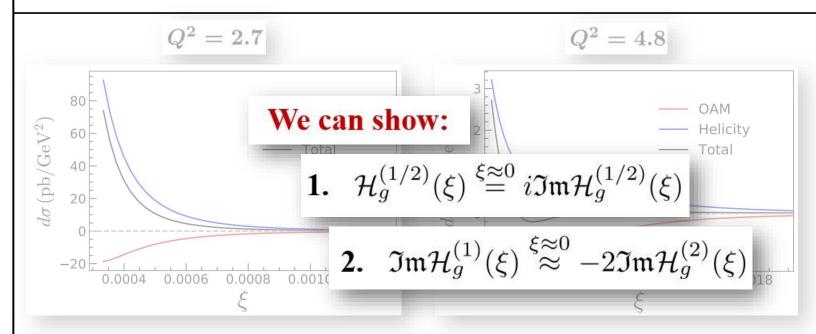


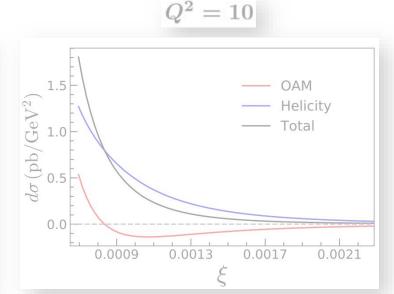


DSA:
$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu} \big|_{\delta\phi=0} \sim \Re \left[\mathcal{H}_g^{(1)*}(\xi) \, \tilde{\mathcal{H}}_g^{(2)}(\xi) \right] - \Re \left[\left\{ \mathcal{H}_g^{(1)*}(\xi) + \frac{4q_{\perp}^2}{q_{\perp}^2 + Q^2/4} \mathcal{H}_g^{(2)*}(\xi) \right\} \mathcal{L}_g(\xi) \right]$$



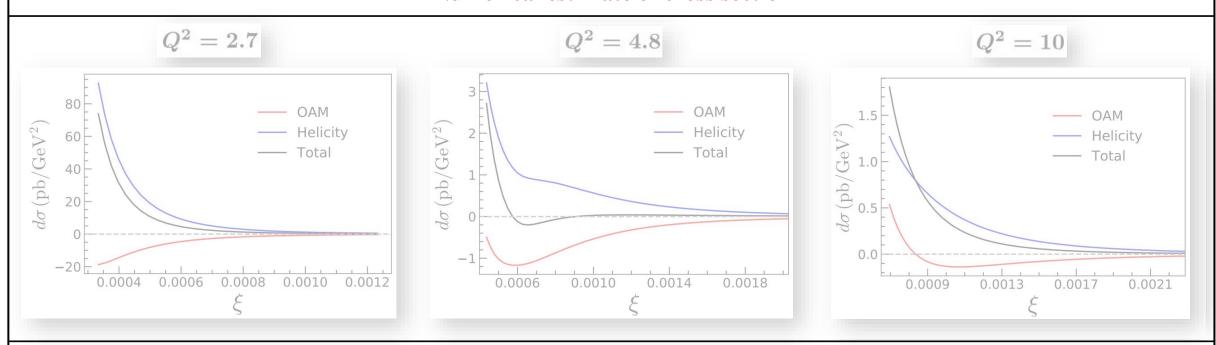
DSA:
$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu} \big|_{\delta\phi=0} \sim \mathfrak{Re} \left[\mathcal{H}_g^{(1)*}(\xi) \, \tilde{\mathcal{H}}_g^{(2)}(\xi) \right] - \mathfrak{Re} \left[\left\{ \mathcal{H}_g^{(1)*}(\xi) + \frac{4q_{\perp}^2}{q_{\perp}^2 + Q^2/4} \mathcal{H}_g^{(2)*}(\xi) \right\} \mathcal{L}_g(\xi) \right]$$





DSA:
$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu} \big|_{\delta\phi=0} \sim \mathcal{H}_g^{(1)*}(\xi) \left(\tilde{\mathcal{H}}_g^{(2)}(\xi) + \frac{q_{\perp}^2 - Q^2/4}{q_{\perp}^2 + Q^2/4} \mathcal{L}_g(\xi) \right)$$

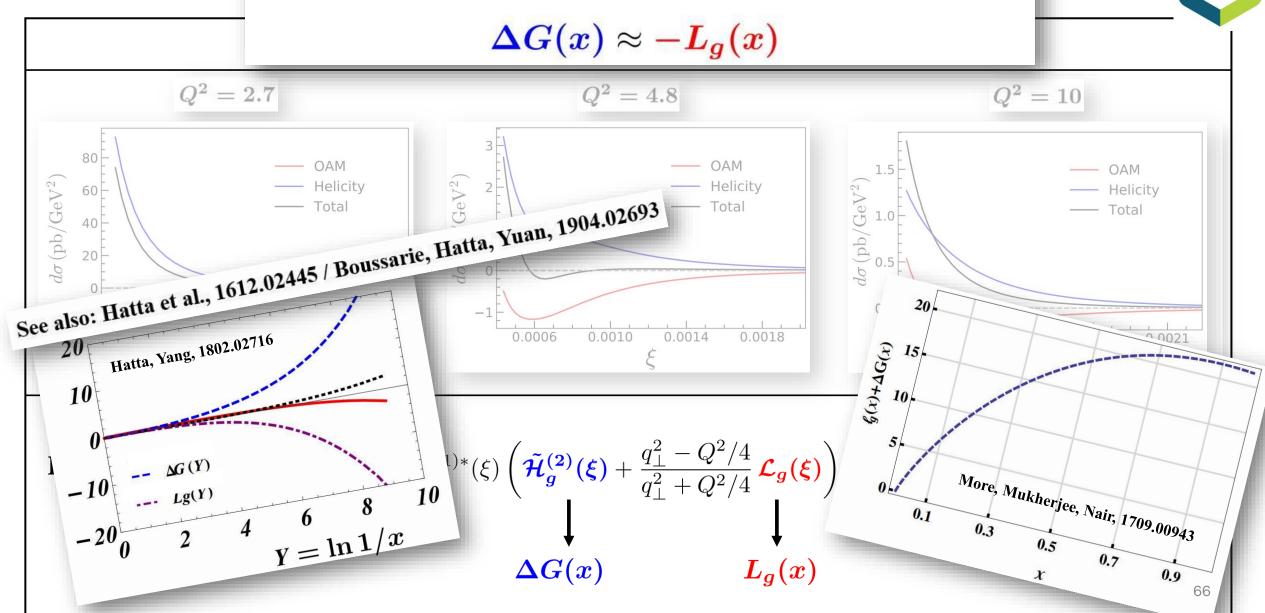
Numerical estimate of cross section



DSA:
$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu} \big|_{\delta\phi=0} \sim \mathcal{H}_g^{(1)*}(\xi) \left(\frac{\tilde{\mathcal{H}}_g^{(2)}(\xi)}{q_{\perp}^2 + Q^2/4} \mathcal{L}_g(\xi) \right)$$

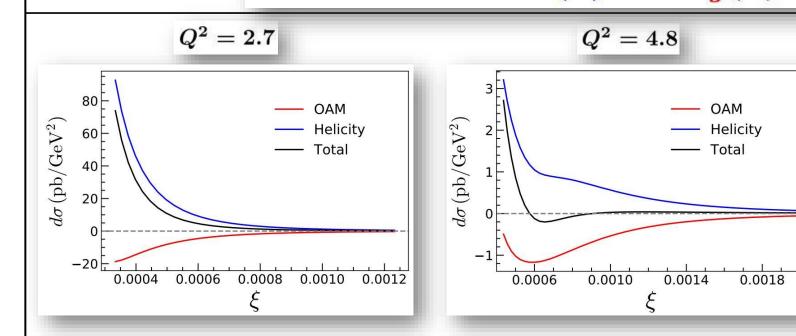
 $\tilde{\mathcal{H}}_{m{g}}^{(2)}$ & $\mathcal{L}_{m{g}}$ interfere positively/negatively depending upon sign of $q_{\perp}^2 - \frac{Q^2}{4}_{65}$

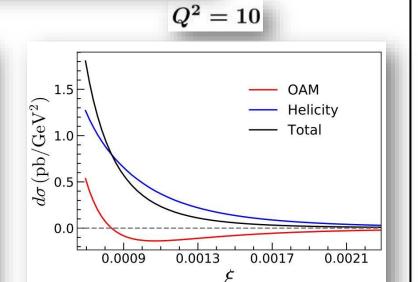
Cancellation expected between Helicity & OAM at small $oldsymbol{x}$



Cancellation expected between Helicity & OAM at small x

$$\Delta G(x) pprox - L_g(x)$$





Unique opportunity to study interplay between

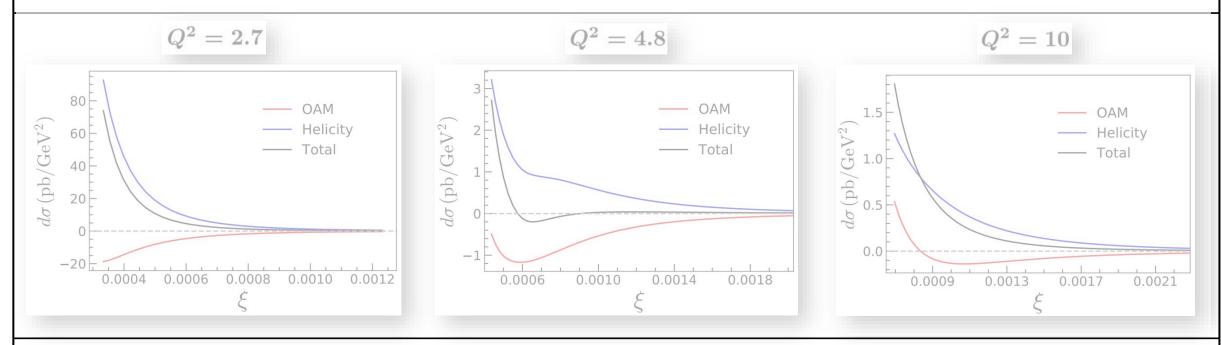
$$\Delta G(x) \& L_g(x)$$

which has been so far only studied theoretically!

$$\begin{pmatrix} \tilde{\mathcal{H}}_{\boldsymbol{g}}^{(2)}(\boldsymbol{\xi}) + \frac{q_{\perp}^2 - Q^2/4}{q_{\perp}^2 + Q^2/4} \mathcal{L}_{\boldsymbol{g}}(\boldsymbol{\xi}) \end{pmatrix}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Delta G(\boldsymbol{x}) \qquad \qquad L_{\boldsymbol{g}}(\boldsymbol{x})$$



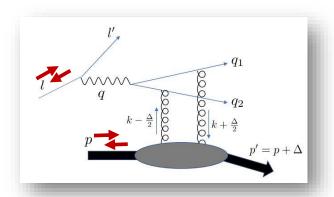
Caveat:

• In practice, measurements are done in a window in z around z=1/2Corrections of order $\sim (z-1/2)^2$ should be calculable in k_t -factorization approach

	Summary	
•	Gluon OAM related to the Wigner distribution	

Summary

- Gluon OAM related to the Wigner distribution
- DSA in exclusive dijet production is a unique observable to access the gluon OAM @ EIC:

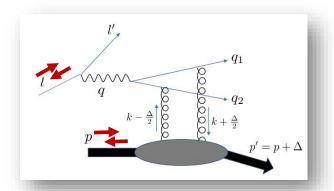


$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu} \sim -\Re \left[\left\{ \mathcal{H}_g^{(1)*}(\xi) + \frac{4q_{\perp}^2}{q_{\perp}^2 + \mu^2} \mathcal{H}_g^{(2)*}(\xi) \right\} \mathcal{L}_g(\xi) \right] \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

$$+\Re \left[\mathcal{H}_g^{(1)*}(\xi) \tilde{\mathcal{H}}_g^{(2)}(\xi) \right] \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

Summary

- Gluon OAM related to the Wigner distribution
- DSA in exclusive dijet production is a unique observable to access the gluon OAM @ EIC:

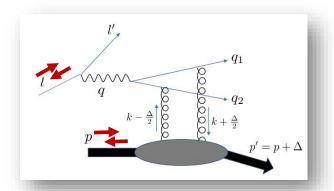


$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu} \sim -\Re \left[\left\{ \mathcal{H}_g^{(1)*}(\xi) + \frac{4q_{\perp}^2}{q_{\perp}^2 + \mu^2} \mathcal{H}_g^{(2)*}(\xi) \right\} \mathcal{L}_g(\xi) \right] \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}}) + \Re \left[\mathcal{H}_g^{(1)*}(\xi) \tilde{\mathcal{H}}_g^{(2)}(\xi) \right] \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

Summary

DSA does not vanish for symmetric jet configurations $z = \bar{z} = \frac{1}{2}$

• DSA in exclusive dijet production is a unique observable to access the gluon OAM @ EIC:



$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu} \sim -\Re \left[\left\{ \mathcal{H}_g^{(1)*}(\xi) + \frac{4q_{\perp}^2}{q_{\perp}^2 + \mu^2} \mathcal{H}_g^{(2)*}(\xi) \right\} \mathcal{L}_g(\xi) \right] \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}}) + \Re \left[\mathcal{H}_g^{(1)*}(\xi) \tilde{\mathcal{H}}_g^{(2)}(\xi) \right] \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

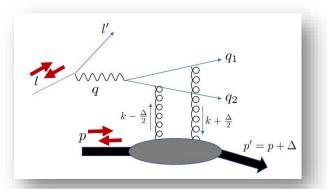
Summary

DSA does not vanish for symmetric jet configurations $z=\bar{z}=\frac{1}{2}$

Consequence:

DSA in exclusive dijet production

Elimination of factorization-breaking third poles at $x=\pm \xi$



$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu} \sim - \Re \left[\left\{ \mathcal{H}_g^{(1)*}(\xi) + \frac{4q_{\perp}^2}{q_{\perp}^2 + \mu^2} \mathcal{H}_g^{(2)*}(\xi) \right\} \mathcal{L}_g(\xi) \right] \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

$$+ \Re \left[\mathcal{H}_g^{(1)*}(\xi) \tilde{\mathcal{H}}_g^{(2)}(\xi) \right] \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

Summary

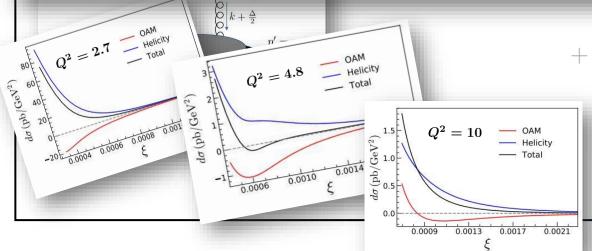
DSA does not vanish for symmetric jet configurations $z=\bar{z}=\frac{1}{2}$

• DSA in exclusive dijet production is

Consequence:

Elimination of factorization-breaking third poles at $x=\pm \xi$

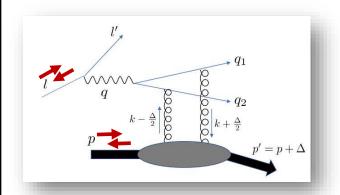
DSA is a unique observable to study interplay between gluon OAM & helicity



$$+\operatorname{\mathfrak{Re}}\left[\mathcal{H}_{g}^{(1)*}(\xi)\left(\tilde{\mathcal{H}}_{g}^{(2)}(\xi)\right)\cos(\phi_{l_{\perp}}-\phi_{\Delta_{\perp}})
ight]$$

Summary

- Gluon OAM related to the Wigner distribution
- DSA in exclusive dijet production is a unique observable to access the gluon OAM @ EIC:



$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu} \sim -\Re \left[\left\{ \mathcal{H}_g^{(1)*}(\xi) + \frac{4q_{\perp}^2}{q_{\perp}^2 + \mu^2} \mathcal{H}_g^{(2)*}(\xi) \right\} \mathcal{L}_g(\xi) \right] \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

$$+\Re \left[\mathcal{H}_g^{(1)*}(\xi) \tilde{\mathcal{H}}_g^{(2)}(\xi) \right] \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

First realistic numerical calculation of observable sensitive to OAM @ EIC

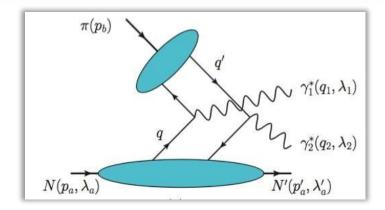
Outlook
What about quark OAM?

Outlook

arXiv: 1702.04387 (2017)

Generalized TMDs and the exclusive double Drell-Yan process

Shohini Bhattacharya, Andreas Metz, and Jian Zhou²



What about quark OAM?

- Exclusive double Drell-Yan is the only known process sensitive to quark OAM
- Low count rate (Amplitude $\sim \alpha_{em}^2$)
- Alternatively, access quark OAM through dijet production in ep collisions

(SB, Boussarie, Hatta, Work in progress)

Backup slides

Cross section

Jet azimuthal angle ($\phi_{q_{\perp}}$) integrated out

$$\frac{d\sigma}{dy dQ^{2} d\phi_{l_{\perp}} dz dq_{\perp}^{2} d^{2} \Delta_{\perp}} = \frac{\alpha_{em} y}{2^{11} \pi^{7} Q^{4}} \frac{\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^{*} A_{\nu}}{(W^{2} + Q^{2})(W^{2} - M_{J}^{2}) z \overline{z}}$$

Integrate assuming a Gaussian form factor

$$\sim e^{-b\Delta_{\perp}^{2}}$$
Slope = 5

(See Braun, Ivanov, 0505263)