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We present the most recent extraction of unpolarized transverse-momentum-dependent (TMD)
parton distribution functions (PDFs) and TMD fragmentation functions (FFs) from global data
sets of Semi-Inclusive Deep-Inelastic Scattering (SIDIS) and Drell-Yan. The fit is performed at the
(next-to-)3leading logarithmic accuracy in the resummation of qT -logarithms and features flexible
non-perturbative functions, which allow to reach a very good agreement with the experimental data.
In particular, we address the tension between the low-energy SIDIS data and the theory predictions,
and explore the impact of the precise LHC data on the fit results.

I. INTRODUCTION

A crucial step towards understanding the interactions among quarks and gluons and the phenomenon of
confinement can be achieved by charting multi-dimensional maps of the internal structure of nucleons.

Transverse-momentum-dependent distributions (TMDs) encode information about the three-dimensional dis-
tribution of quarks in momentum space. The level of sophistication of a TMD extraction from experimental
data can be described by the following features: the number of included data from different experiments, and
the perturbative accuracy in the resummation of large qT -logarithms reached in the theoretical formalism. In
this analysis, we include 2031 experimental data and we push the accuracy of the calculation to what we will
refer to as N3LL−. 1

This contribution is a summary of the results extensively discussed in Ref. [1]. At present, the extractions
of Ref. [1–3] are the only global analyses available on the market, namely they combine SIDIS and DY data in
a full-fledged TMD fit. These fits rely on the universality of the partonic distributions and take advantage of
using different processes to constrain them better.

As discussed in the next section, describing SIDIS data at moderate to low scales up to N2LL and N3LL− is
very challenging. We solve this issue by fixing the normalization of the TMD predictions through a multiplicative
prefactor which compares their integral upon transverse momentum to the corresponding cross section calculated
in collinear factorization. With this prefactor, we fix the normalization in a theoretically well-justified way, which
is also independent of the results of the fit.

The reduced-χ2 of our baseline fit, performed at N3LL− using 2031 data points, is χ2/Ndat = 1.06.

II. FORMALISM

A. SIDIS cross section

In the limit where leptonic and hadronic masses can be neglected, the differential cross section for unpolarized
SIDIS at small transverse momentum [2, 4] reads:

dσSIDIS

dx dz d|qT | dQ
=

8π2 α2 z2 |qT |
xQ3

[
1 +

(
1− Q2

xs

)2]
FUU,T

(
x, z, q2

T , Q
)
, (1)
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where x, z are the light-cone fractions related to the collinear momenta of the incoming and outgoing quarks,
respectively [4]; q is the 4-momentum of the exchanged virtual photon, whose transverse component in the
frame where the incoming and outgoing hadrons are collinear is denoted as qT , and for which Q2 = −q2 > 0;
α is the QED coupling constant. Since we focus only on the small transverse momentum region |qT | � Q (i.e.
the TMD region), in Eq. (1) we neglect the contributions from fixed-order calculations at high |qT | and the
matching of these to the TMD region.

The unpolarized SIDIS structure function FUU,T is defined as [4]:

FUU,T
(
x, z, |qT |, Q

)
=

x

2π
H(Q,µ)

∑
a

e2
a

ˆ +∞

0

d|bT ||bT |J0

(
|bT ||qT |

)
f̂a1 (x, b2

T ;Q,Q2) D̂a→h
1 (z, b2

T ;Q,Q2) (2)

where the sum runs over quarks and antiquarks a. H is the SIDIS hard function and µ is the renormalization

scale. The f̂a1 (x, b2
T , Q,Q

2) and D̂a→h
1 (z, b2

T , Q,Q
2) are, respectively, the Fourier transforms of the unpolarized

TMD PDF for a quark a in a proton, fa1 (x,k2
⊥;Q,Q2), and of the TMD FF for a quark with flavor a fragmenting

into a hadron with flavor h, Da→h
1 (z, z2p2

⊥;Q,Q2). The variable bT is conjugated via Fourier transform to the
transverse momentum qT (and to the partonic transverse momenta k⊥ and p⊥, such that qT = p⊥−k⊥). The Q
and Q2-dependence of both the TMD PDF and FF is introduced by the ultraviolet and rapidity renormalization
of the TMDs (see Sec. II C for more details on the scale choices).

The observable provided by the HERMES and COMPASS collaborations is the multiplicity, namely the ratio
of the SIDIS cross section over the DIS one

M(x, z, |PhT |, Q) =
dσSIDIS

dx dz d|PhT | dQ

/
dσDIS

dx dQ
(3)

where PhT is the transverse momentum of the observed hadron in the Breit frame, which is related to qT as [5]:

qT = −PhT /z . (4)

In Ref. [2] it was demonstrated that TMD factorization at NLL accuracy is able to successfully reproduce the
normalization and shape of HERMES multiplicities and the shape of the available COMPASS multiplicities. At
variance with Ref. [3], we find a significant tension between the experimental values for the SIDIS multiplicities
and the calculations in TMD factorization beyond NLL. This tension has been observed independently by other
groups and documented, for example, in Ref. [6]. We propose to modify the normalization of the N2LL and
N3LL predictions to recover a good agreement with data. An extended discussion of this issue can be found in
Ref. [7]. The proposed solution consists in introducing the following normalization factor:

ω(x, z,Q) =
dσ

dx dz dQ

/ ˆ
d2qT W , (5)

where the numerator is the cross section for SIDIS in collinear factorization and the W term in the denominator
coincides with Eq. (1) (see also the terminology of Ref. [5]). This prefactor accounts for the difference between
the integral of the qT -dependent SIDIS cross section at low transverse momentum and the collinear cross section
at a given order in perturbation theory. Within the scope of our analysis, which is limited to the small transverse
momentum region, the qT -differential cross section is approximated with the TMD calculation. This prefactor
does not depend on qT or any of the fit parameters (for more details, see Ref. [1]) and is different from 1 beyond
NLL. As a consequence, the theoretical expression for the multiplicity becomes:

dσSIDIS
ω

dx dz d|qT | dQ
= ω(x, z,Q)

dσSIDIS

dx dz d|qT | dQ
. (6)

B. Drell-Yan cross sections

The cross section for Drell-Yan reads:

dσDY/Z

d|qT | dy dQ
=

16π2α2

9Q3
|qT | P F 1

UU

(
xA, xB , |qT |, Q

)
, (7)

where qT is the transverse momentum of the intermediate boson, y is its rapidity, and P is the phase space factor
to account for potential cuts on the lepton kinematics [8]. At low transverse momentum q2

T � Q2 = q2 > 0 the
structure function can be expressed as a convolution over the partonic transverse momenta of two TMD PDFs:

F 1
UU

(
xA, xB , |qT |, Q

)
=
xAxB

2π
H(Q,µ)

∑
a

ca(Q)

ˆ +∞

0

d|bT ||bT |J0

(
|bT ||qT |

)
f̂a1 (xA, b

2
T ;Q,Q2) f̂ ā1 (xB , b

2
T ;Q,Q2) ,

(8)
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where ca(Q) are the electro-weak charges [8], H is the hard function of the process, µ is the renormalization
scale, xA,B are the partonic longitudinal momentum fractions, which, in the small transverse momentum limit,
take the values:

xA =
Q√
s
ey , xB =

Q√
s
e−y . (9)

C. Transverse momentum distributions

The evolved TMDs from the initial values of the renormalization and rapidity scales µi, ζi, to the final values
µf , ζf , read

f̂a1 (x, b2
T ;µf , ζf ) = f̂a1 (x, b2

T ;µi, ζi) exp

{ˆ µf

µi

dµ

µ
γF

[
αs(µ);

ζ

µ2

]}(
ζf
ζi

)K(|bT |, µi)/2

, (10)

where αs is the strong coupling constant and K is the Collins-Soper kernel [5]. The same structure holds for
the TMD FF. The scale µi can be conveniently fixed as µb = 2e−γE/|bT |, and thus Eq. (10) is perturbatively
meaningful only at low values of |bT |. The arbitrary matching to the non-perturbative regime at large |bT | is
accomplished by modifying the scale µb as µb∗ = 2e−γE/b∗, with

b∗(|bT |, bmin, bmax) = bmax

(
1− e−|bT |4/b4max

1− e−|bT |4/b4min

)1/4

, (11)

where

bmax = 2e−γE GeV−1 ≈ 1.123 GeV−1 , bmin = 2e−γE/Q . (12)

In this way, b∗ saturates to bmax at large |bT |, as suggested by the CSS formalism [5]. At small |bT |, the
arbitrary matching to fixed-order collinear calculations is realized by saturating b∗ to bmin. Accordingly, in the
limit |bT | → 0 the Sudakov exponent vanishes. For the processes considered in this analysis, it is customary to
choose the final scales as µ2

f = ζf = Q2 [5], which explains the Q dependence of the structure functions and

of the TMDs in Eqs. (2) and (8). In order to avoid the Landau pole at large |bT |, the Collins–Soper kernel K
needs to be modified by including a correction term, gK(b2

T ), for which we choose a specific functional form:

K(|bT |, µb∗) = K(b∗, µb∗) + gK(|bT |) , gK(b2
T ) = −g2

2

b2
T

4
. (13)

In order not to affect the perturbative calculation at small |bT |, the gK(b2
T ) needs to vanish in the limit |bT | → 0.

The TMD PDF (FF) at the input scales can be factorized on the basis of collinear PDFs (FFs):

f̂a1 (x, b∗;µb∗ , µ
2
b∗) =

∑
b

ˆ 1

x

dx′

x′
Cab(x′, b∗;µb∗ , µ

2
b∗) f

b
1

(
x

x′
;µb∗

)
≡ [C ⊗ f1](x, b∗;µb∗ , µ

2
b∗) , (14)

where the sum runs over quarks, antiquarks, and the gluon. The matching coefficients C are determined as a
perturbative expansion in powers of αs(µb∗). At large |bT | we introduce a flavor-independent non-perturbative
factor multiplying the matching in Eq. (14). For the TMD PDF it is defined as:

f1NP (x, b2
T ; ζ,Q0) =

g1(x) e−g1(x)
b2T
4 + λ2 g2

1B(x)

[
1− g1B(x)

b2
T

4

]
e−g1B(x)

b2T
4 + λ2

2 g1C(x) e−g1C(x)
b2T
4

g1(x) + λ2 g2
1B(x) + λ2

2 g1C(x)

[
ζ

Q2
0

]gK(b2
T )/2

,

(15)
and for the TMD FF, instead, the form is:

D1NP (z, b2
T ; ζ,Q0) =

g3(z) e−g3(z)
b2T
4z2 + λF

z2 g
2
3B(z)

[
1− g3B(z)

b2
T

4z2

]
e−g3B(z)

b2T
4z2

g3(z) + λF

z2 g
2
3B(z)

[
ζ

Q2
0

]gK(b2
T )/2

. (16)

The non-perturbative factors f1NP , D1NP → 1 for bT → 0. The gi functions account for the kinematic
dependence of the widths of the distributions:

g{1,1B,1C}(x) = N{1,1B,1C}
xσ{1,2,3}(1− x)α

2
{1,2,3}

x̂σ{1,2,3}(1− x̂)
α2
{1,2,3}

, g{3,3B}(z) = N{3,3B}
(zβ{1,2} + δ2

{1,2})(1− z)
γ2
{1,2}

(ẑβ{1,2} + δ2
{1,2})(1− ẑ)

γ2
{1,2}

, (17)

where x̂ = 0.1, ẑ = 0.5, and Q0 = 1 GeV2.
In total there are 21 free parameters: 1 associated to the non-perturbative part of TMD evolution (Eq. (13)),

11 related to the non-perturbative part of the TMD PDF (Eqs. (15), (17)), 9 for the non-perturbative part of
the TMD FF (Eqs. (16), (17)).



4

III. EXPERIMENTAL DATA

This fit is based on the analysis of the “global” set of experimental data available to extract unpolarized
TMDs, namely SIDIS, Drell-Yan (and Z-boson production). As already mentioned, experimental data for
electron-positron annihilation into two hadrons are not available yet. Moreover, we do not include in this
analysis data from processes involving jet-based quantities, since they significantly differ from the involved
formalism, and data for W -boson production, whose interpretation in TMD factorization presents specific
challenges (e.g. the definition of the hard scale) and opportunities (e.g. the access to the flavor structure of
the TMDs [9]). The number of data points included in this analysis is 2031, of which 1547 come from SIDIS
measured by the HERMES and COMPASS collaborations. The first provides unpolarized multiplicities for
scattering off a proton and deuteron target, with detected final-state positive and negative pions and kaons.
The second provides multiplicities for scattering off a deuteron with detected final-state charged hadrons. The
rest of the data is for Drell-Yan, both in the collider mode (from the ATLAS, CMS, CDF, D0, STAR, PHENIX
collaborations) and in the fixed-target mode at low energy (from the E288, E605, E772 collaborations).

IV. RESULTS

The present analysis is performed at an approximate N3LL perturbative accuracy [1]. We rely on the following
choices for the collinear PDFs and FFs: MMHT2014nnlo68cl for the proton quark PDFs (the deuteron is
described with the same set and isospin symmetry), DSS14-NLO for the quark-to-pion FFs, DSS17-NLO for
the quark-to-kaon FFs. On top of the experimental uncertainties, we associate a theoretical error to the
observable related to the nature of the collinear set used in this analysis. We compute this error using the
Hessian method. Since we observe that PDF and FF uncertainties are significantly correlated across bins, we
decompose them into a correlated part (80% of the total) and an uncorrelated part (the remaining 60%) to be
combined in quadrature.

In order to restrict the analysis to the small transverse momentum region, we impose the following cuts:

|qT | |DY/Z < 0.20Q , |PhT | |SIDIS < min
[

min[c1Q, c2 zQ] + c3 GeV, zQ
]
, (18)

where c1 = 0.2, c2 = 0.5, c3 = 0.3. In the SIDIS case, the structure of Eq. (18) guarantees that |qT | < Q .
By fitting 21 free parameters to the 2031 experimental data, we obtain a χ2/Ndat of 1.06. We perform

the error analysis with the replica method, namely by fitting an ensamble of 250 Monte Carlo replicas of the
dataset.2 We refer the reader to Ref. [1] for more details about the fitting procedure and the comparison between
experimental data and the theory predictions.
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FIG. 1: The TMD PDF of the up quark in a proton at µ =
√
ζ = Q = 2 GeV (left panel) and 10 GeV (right panel) as

a function of the partonic transverse momentum |k⊥| for x = 0.001, 0.01 and 0.1. The uncertainty bands represent the
68% confidence level (CL).

In Fig. 1, we show an example of the extracted unpolarized TMD PDFs for an up quark in a proton, including
both perturbative and non-perturbative components (see Ref. [1] for the visualization of TMD FFs). The shape
of the non-perturbative parts is crucial for a correct description of the data. In Fig. 1, one can appreciate the
significant role played by the weighted Gaussian and by the second Gaussian in Eq. (15), which may reflect the
underlying contribution from different (spin) configurations.

2 The aforementioned value of the χ2/Ndat is related to the original (unfluctuated) dataset.



5

It is interesting to see the result for the Collins–Soper kernel [5] that drives the evolution of TMDs in terms
of the rapidity scale ζ.

In Fig. 2, we show the Collins–Soper kernel as a function of |bT | at the scale µ = 2 GeV for the MAPTMD22
analysis and for four other analyses [2, 3, 8, 10]. The solid lines at low |bT | correspond to the perturbative
contribution, which differs due to the different logarithmic accuracies of the various analyses.

The b∗ prescription modifies the curves starting from |bT | ≈ 1 GeV−1. The behavior at high |bT | is driven
by the choice of the parameterization of gK and, so, is different for the various analyses.

The b∗ variable saturates to bmin ≈ 1.123/Q in this analysis and also in Ref. [2]. This implies that at low |bT |
the Collins–Soper kernel saturates to a finite value, as indicated by the corresponding dashed lines.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

|bT | [GeV−1]
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µ
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FIG. 2: The Collins–Soper kernel as a function of |bT | at a scale µ = 2 GeV from the present analysis (MAPTMD22),
compared with the PV17 [2], SV17 [10], PV19 [8], and SV19 [3] analyses. For the MAPTMD22, PV17, and PV19 curves,
the uncertainty bands represent the 68% CL. Dashed lines show the effect of including the bmin-prescription.

The complete list of results (theory summary, global statistical estimators, etc.) obtained from the fit pre-
sented in this contribution will be available at the following public git repository:

https://github.com/MapCollaboration/NangaParbat
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