Measurement of angular distribution of Drell-Yan dimuons by the SeaQuest experiment at Fermilab

Kei Nagai Los Alamos National Laboratory

lamos ABORATORY on behalf of the SeaQuest Collaboration

5th May, 2022

XXIX International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS2022) Santiago de Compostela

- 1. Drell-Yan process and proton structure
- 2. Angular distribution
- 3. Measurement of angular distribution by SeaQuest
- 4. Summary

1. Drell-Yan process and proton structure

MSTW 2008 NLO

- Deep Inelastic scattering experiments have investigated the proton structure
 - ► Scattering with all charged partons (u, d, ū, d, …)
 - Great achievement for u, d quarks PDFs

antiquark is always <u>sea quark</u>

$\overline{\mathcal{M}}$ Proton antiquark flavor asymmetry $\overline{d}/\overline{u}$

February 2021: The asymmetry of antimatter in the proton Nature **590**, 561 (2021)

• Antiquark flavor asymmetry $\overline{d}/\overline{u}$ of the proton at large x (0.13 < x < 0.45)

► *x*: Bjorken *x*, momentum fraction of parton to the proton

• $\bar{d}/\bar{u} > 1.0$ in all measured range

• PDF

 Function of longitudinal momentum x (1-dim)

- TMD (Transverse-momentum dependent parton distribution function)
 - Longitudinal momentum x + transverse momentum $\overrightarrow{k}_{\perp}$ (3-dim)
 - Research on the effect of spin

TMDs Quarks Longitudinally Polarized **Transversally Polarized** Unpolarized **Boer**-Mulders J_1 (\bullet) U Ν u g_{1L} С h_{1T} Sivers e g_{1T}^{\perp} Т 0 n

- Sivers function: SpinQuest experiment
 - Transversally polarized target and unpolarized beam
 - Represent the relation between quark transverse momentum and nucleon spin
 - Contribution of orbital angular momentum of the quarks on proton spin

Boer–Mulders function

- Unpol. target and unpol. beam
- Relation between quark transverse spin and transverse momentum
- Research on <u>Lam-Tung relation</u>

2.Angular Distribution

Sea Construction of Drell-Yan

- Collins-Soper frame
 - Lepton rest frame
 - θ : polar angle of positive lepton
 - ϕ : azimuthal angle of positive lepton

- Drell–Yan cross section $\frac{d\sigma}{d\Omega} \propto 1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi$ Notice to the second secon
 - Naively, $\lambda = 1$, $\mu = \nu = 0$ ($d\sigma \propto 1 + \cos^2 \theta$) at leading order

 \star No transverse momentum on quarks

 \star No gluon emission

- NLO: $\lambda \neq 1$, μ , $\nu \neq 0$, but $1 \lambda = 2\nu$ is held (**Lam-Tung relation**)
- Lam–Tung relation
 - Analogue of Callan–Gross relation (scattering of spin 1/2 particles)
 - Held when q- \bar{q} axis is coplanar to hadron plane

Lam-Tung violation

- NA10 (CERN), E615 (Fermilab)
 - $\pi^{-}(\bar{u}d)$ +W
 - ► NA10: 194 GeV, E615: 252 GeV beam
 - L–T violation @ large p_T
- E866 (Fermilab)
 - ▶ p+d (p+p), 800 GeV beam
 - Smaller L–T violation than π beam experiments

L-T violation is different in different beam type

Phys. Rev. Lett. 99, 082301, (2007)

Boer-Mulders function

- Boer-Mulders function and ν • $\nu/2 \propto h_1^{\perp}(\text{beam})h_1^{\perp}(\text{target})$
- <u>B-M functions of sea quarks don't</u> have to be the same as that of <u>valence quarks</u>
 - π beam: antiquark as valence quark, valence quark-valence antiquark reaction is dominant
 - proton beam: no antiquants valence quarks, sea quarks are always proton beam: no antiquarks as

3.Measurement of angular distribution by SeaQuest

Sea Configure E906/SeaQuest experiment

- Fermi National Accelerator Laboratory (FNAL)
 - 120 GeV proton beam provided by Main Injector
- Fixed target Drell-Yan experiment
 - Typical momentum of the muon ~ 40 GeV
- Four tracking stations
 - Drift chamber (St.1-3) or proportional tube (St.4)
 - Hodoscopes
- Data acquisition: 2014-2017
 - 8.6×10^{17} protons on target

Motivation of angular distribution measurement by SeaQuest

- Angular distribution results by fixed-target x proton beam are only by E866 at this present
 - SeaQuest will give another set of results
- Different kinematics of E866
 - Gives Boer–Mulders function at larger x region
- Baseline of E1039
 - E1039: polarized targets
 SeaQuest: unpolarized targets
 - Pure hydrogen (and deuterium) angular distribution

Sea Chiest Analysis Procedure

- Plot $\cos \theta$ vs ϕ of data, background, and simulation
 - ▶ data: (\(\sigma_{DY} + \sigma_{BG}\) \times
 [trigger efficiency] \times [detector acceptance] \times [detector efficiency] (A)
 ★ Subscripts DY and BG stand for Drell-Yan and background
 - ▶ background: σ_{BG} × [trigger efficiency] × [detector acceptance] × [detector efficiency] (B)
 - ► Simulation:

[trigger efficiency] × [detector acceptance] × [detector efficiency] (C) * Obtained by [Accepted simulation / 4pi simulation]

- Subtract background from data -(A)-(B) = (D)
- Correct efficiencies and acceptance
 - ► (D) / (C) = (E)
- Fit (E) with

 $A \times (1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi)$

E866 p+d, NA10, E615 data Phys. Rev. Lett. 99, 082301 (2007) E866 p+p data Phys. Rev. Lett. 102, 182001 (2009)

- Expected accuracy based on SeaQuest real data
- ν : important factor to determine Boer–Mulders function
 - Enough accuracy to see the difference of pion- and proton-induced Drell-Yan
- Different x_2 coverage of E866

Sea Confesse Summary & Outlook

- The structure of proton is probed by Drell-Yan process accurately.
- SeaQuest experiment measured $\overline{d}/\overline{u}$ in the proton at high x_2 (Feb. 2021).
- Proton-induced Drell-Yan angular distribution analysis is in progress.
 - Measurement of Boer-Mulders function (represents relation of transverse momentum and spin)
- Boer-Mulders function is one of the candidates causing Lam-Tung violation.
 - The E866 results are only the results of proton-induced Drell-Yan angular distribution measurement at this present.
 - SeaQuest will give another set of proton-induced Drell–Yan angular distribution in different x₂ coverage.
- Detector efficiencies, rate effect are not considered for now. Take these effect into account to finalize.

