

very forward neutron A_N

DIS 2022, Santiago de Compostela May 5, 2022

Ralf Seidl (RIKEN)

Very Forward neutron production in p+p

collisions

- Forward neutron production at ISR qualitatively described by one-pion exchange (OPE) model (Regge)
- Also at RHIC in unpolarized cross sections; reasonable consistency with model

Transverse Single spin asymmetries (TSSAs)

Fukao et al: PLB 650 (2007) 325

Kopeliovich et al: PRD 84 (2011) 114012

$$A_N = \frac{1}{P} \frac{N^L - N^R}{N^L + N^R}$$

- First forward neutron asymmetries seen at RHIC
- Existence of nonzero asymmetries requires an extension to OPE model: interference of pion and a₁ Regge amplitudes can qualitatively describe A_Ns

From p+p to p+A neutron asymmetries

- Unexpectedly large A dependence in neutron asymmetries
- Even a sign change seen
- OPE model does not predict such a change in asymmetries
- Are there other sources to the asymmetries?

Ultraperipheral collisions in p+A

Mitsuka: EPJC 75 (2015) 614

STARLIGHT+SOPHIA+DPMJ ET/PYTHIA simulations

- When impact parameter too large for nuclear interactions, ultraperipheral collisions still possible with photon field from nucleus
- Especially for forward neutrons at low transverse momenta and high momentum fractions x_F substantial contribution
- Z² dependence increases relative contribution from Al to Au

Enhance or suppress UPC and hadronic contributions via correlations

PRL 120 (2018), 022001

- Coincidence with charged particle activity in forward and backward region (BBC) enhances hard interactions → asymmetries stay negative
- Veto enhances UPC contribution → p+Al asymmetries already positive
- → study also the actual x_F and P_T dependence for actual interplay

Enhance or suppress UPC and hadronic contributions via correlations

PRL 120 (2018), 022001

Mitsuka PRC95 (2017) 044908 - qualitative agreement in

- Coincidence with charged particle activity in forward and backward region (BBC) enhances hard interactions → asymmetries stay negative
- Veto enhances UPC contribution → p+Al asymmetries already positive
- \rightarrow study also the actual x_F and P_T dependence for actual interplay

RHIC Accelerator complex@BNL

- Polarized proton beams from \sqrt{s} of 62-510 GeV
- up to 120 filled bunches, spin orientations alternating bunch-by-bunch in several predefined spin pattern
- pA, AA collisions up to 200 GeV
- Spin rotators around PHENIX and STAR to select long. or transversely polarized beams
- Global (polarized H-jet, C targets) and local (ZDC) polarimetry

~ 70% Polarization

Versus Versus Versus

 2×10^{11} Pol. Protons / Bunch

Siberian Snakes

 ε = 20 π mm mrad

RHIC pC Polarimeters

PHENIX

- main detector:
 - 2 Central arms ($|\eta|$ <0.35, 90 degrees each):
 - 2 Muon arms $(1.2 < |\eta| < 2.4)$
- BeamBeamCounter (BBC, 3.1<|η|<3.9,
 hard collision/luminosity detectors)
- ZeroDegreeCalorimeter ($|\eta| > 6.1$):
 - 3 10x10 cm² modules of 1.7 nuclear interaction lengths each, 20% energy resolution for 100 GeV neutrons
 - ShowerMaxDetector 7 strips horizontally and vertically, 1cm resolution

ZDC running in 2015 p+p and p+A, neutron reconstruction

- In 2015 p+p, p+Al and p+Au collisions at 200
 GeV
- For p+A running tilted beam direction compensated by shifting ZDC to nominal beam center

- Total energy in ZDC1+2+3: 40 120 GeV
- EM veto: $E_{ZDC2}/E_{tot} > 3\%$
- 0.5 cm < r < 4.0 cm for neutron hits
- >0 SMD Strips horizontal and vertical strips hit
- 4(+2) P_T bins [0,0.01, 0.06,0.11, 0.16, 0.21,0.4]
 GeV/c
- 4(+2) x_F bins [0,0.4,0.55,0.7,0.85,1.,1.2]

Unfolding procedure, Systematics, Predictions

- RooUnfold (Bayes) unfolding (iterative unfolding – variation of iterations as one source of systematics) on spin dependent 3D yields → Asymmetry calculation
- Several MC generators + GEANT3
 simulations as basis for unfolding:
 Pythia6/8, DPMJET, OPE motivated (π+p
 Pythia 8, using measured n spectra), UPC
 (STARlight+Sophia+DPMJET) → variation
 as systematics
- Variation of beam center at ZDC and asymmetry reconstruction method → systematics

- Model calculations from Mitsuka, combining UPC and hadronic (<u>Kopeliovich</u> <u>et al: PRD 84 (2011) 114012</u>) calculations
- For p+p and p+Al scaled UPC xsecs by simple Z² dependence and OPE xsecs by A^{0.42} dependence
- UPC model takes into account only $n+\pi^+$ resonances \rightarrow sharp P_T/x_F behavior

Inclusive neutron asymmetries in p+p

PRD 105 (2022) 032004

Dashed areas: best parameterizations of x_F integrated asymmetries using Pol3, Power law or Exponential

- Magnitude increasing with P_T except for low x_F
- Only weak x_F dependence in hadronic events, slightly larger in BBC vetoed events
- Comparable to (OPE dominated) model curves

Inclusive neutron asymmetries in p+Al

PRD 105 (2022) 032004

- Cancellation between hadronic and UPC contributions results in very small asymmetries in data and model
- Qualitative agreement of model except at high x_F

Inclusive neutron asymmetries in p+Au

PRD 105 (2022) 032004

- Large, increasing asymmetries seen with likely a hint of decrease at high P_T for lower x_F
- Roughly similar behavior in model seen but details shifted – possibly due to inclusion of single pion resonances only

BBC correlated (hits in both BBCs required)

- BBC correlation enhances
 hadronic interactions → p+p and
 p+Al asymmetries nearly
 identical, p+Au slightly smaller
 (some UPC contribution still
 present)
- Qualitatively consistent with the nearly linear behavior predicted from OPE model

BBC Veto (no hits in either BBC)

- BBC Veto enhances UPC contributions:
 - p+p asymmetries much smaller (but still barely negative)
 - p+Al and p+Au asymmetries larger, reaching up to 40%
- UPC related asymmetries increasing with P_T, again suggestion of a reduction at higher P_T at low x_F
- Similar rough agreement of model calculations

Summary

- Explicit x_F and P_T dependence of very forward neutron asymmetries studied in p+p, p+Al and p+Au collisions
- Generally weak x_F dependence of asymmetries while magnitude increasing with P_{τ}
- Interplay between hadronic and UPC interactions studied using correlation studies:
 - BBC tagged asymmetries enhance hadronic interaction and show negative, nearly linear $x_{\rm F}$ dependence predicted by OPE model
 - BBC vetoed asymmetries enhance UPC interaction and show even larger positive p+A asymmetries, rough model agreement likely limited by included resonances
- Studies of p+p asymmetries at other collisions energies (→ different reach in P_T) ongoing

