Transverse single spin asymmetry measurement for (very) forward neutron production at the RHICf experiment

Minho Kim (RIKEN)

on behalf of the RHICf collaboration

Transverse single spin asymmetry

$$A_{N} = \frac{\sigma_{L}^{\uparrow} - \sigma_{R}^{\uparrow}}{\sigma_{L}^{\uparrow} + \sigma_{R}^{\uparrow}}$$
$$= \frac{\sigma_{L}^{\uparrow} - \sigma_{L}^{\downarrow}}{\sigma_{L}^{\uparrow} + \sigma_{L}^{\downarrow}}$$

- In the polarized p + p collision, the A_N is defined by a left-right cross section asymmetry of a specific particle or event.
- A_N of the forward (6 $\langle \eta \rangle$) neutron enables us to study the spin-involved diffractive production mechanism.

Forward neutron production

- One pion exchange (OPE) model well explains the forward neutron production with an absorptive correction.
- The pion exchange is dominant rather than ρ and a_2 exchange, and $p \rightarrow \Delta \rightarrow n$ process.

Forward neutron A_N

J. Phys. Conf. Ser. 295, 012097.

- Non-zero neutron A_N was observed at the IP12 experiment. However, the OPE model couldn't explain the finite neutron A_N .
- The neutron A_N has been measured by the PHENIX experiment with three different collision energies.

Forward neutron A_N

$$A_{N} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$$

$$= \frac{\sum_{X} |\langle cX|T| \uparrow \rangle|^{2} - \sum_{X} |\langle cX|T| \downarrow \rangle|^{2}}{\sum_{X} |\langle cX|T| \uparrow \rangle|^{2} + \sum_{X} |\langle cX|T| \downarrow \rangle|^{2}}$$

$$= \frac{-2\operatorname{Im} \sum_{X} \langle cX|T| - \rangle \langle + |T^{\dagger}|cX\rangle}{\sum_{X} |\langle cX|T| + \rangle|^{2} + \sum_{X} |\langle cX|T| - \rangle|^{2}}$$

- π exchange: spin flip
- a₁ exchange: spin non-flip

- The OPE model introduced a_1 exchange to explain the neutron A_N .
- The π and a_1 exchange model predicts that the A_N increases in magnitude with p_T without x_F dependence.

Unfolded forward neutron A_N

PRD 105, 032004.

- \blacksquare Recently, the neutron A_N at 200 GeV has been unfolded.
- The unfolded data explicitly shows the increasing A_N following the p_T without a clear x_F dependence as the model predicted.

Neutron measurement at RHICf

- RHICf experiment measured the neutron A_N in the highest p_T coverage ever measured ~ 1 GeV/c.
- \blacksquare RHICf data can not only be compared with the PHENIX data but also test the π and a₁ exchange model in a wide p_T coverage.

RHIC forward (RHICf) experiment

STAR experiment

- Operated at RHIC STAR in polarized p + p collisions at √s = 510 GeV in June 2017.
- 18 m away from the IP.
- $0.2 < x_F < 1.0$ $0.0 < p_T < 1.0 \text{ GeV/c.}$

RHICf

Neutron measurement

Side view

Front view

17 tungsten absorbers (44 X_0 , 1.6 λ_{int}), 16 GSO plates, and 4 layers of GSO bars (1 mm dimension).

- $\sigma_{\rm E}$ ~30% and $\sigma_{\rm P_T}$ ~0.025 GeV/c for 200 GeV neutron.
- Shower trigger is operated when the energy deposits of any three successive layers are larger than 45 MeV.

9/16

Analysis procedure

Neutron/photon separation

- L_{20%} and L_{90%} are defined by the longitudinal depth of the detector where the accumulated energy deposit reaches 20% and 90% of the total energy deposit.
- Neutron was separated from the photon in the $L_{90\%}$ versus $L_{20\%}$ plot.

x_F and p_T unfolding

- RHICf detector has insufficient interaction length (1.6 λ_{int}).
- For a prior, neutron was uniformly generated to the detector.
- Two-dimensional Bayesian unfolding was done to get the true distribution.

Background A_N subtraction

Neutron candidate = neu + pho + charged

Difference between • and • → Background photon ratio.

Difference between • and — → Background hadron ratio.

- In this analysis, neutron includes neutral hadrons (Λ ~5%, K<1%, ...).
- Three QGSJET-II 04 samples, total, without photon, and neutron, were unfolded to estimate the background ratio.
- Photon background A_N from photon-enhanced sample. Large uncertainty of $A_N^{Meas.} \sim 1$ to the background hadron A_N .

A_N of the very forward neutron

- Systematic uncertainties of beam center, polarization, background A_N subtraction, and unfolding were considered.
- In the lower p_T region, the A_N s are flat showing no x_F dependence.
- In the higher p_T region, it seems that there is a x_F dependence.

A_N of the very forward neutron

- In higher x_F , the A_N increases in magnitude with p_T up to 1 GeV/c.
- There seems a x_F dependence in the higher p_T region.

Summary

- In June 2017, the RHICf experiment has measured the A_N for (very) forward neutron production in the highest p_T range ever measured.
- In the higher x_F , the A_N increases almost proportional to the p_T as the model predicted.
- In the lower p_T , no x_F dependence was observed.
- In the higher p_T , a x_F dependence was observed.
- More precise background estimation will be done for the final result.

Backup