Transverse single spin asymmetry measurement for (very) forward neutron production at the RHICf experiment Minho Kim (RIKEN) on behalf of the RHICf collaboration ### Transverse single spin asymmetry $$A_{N} = \frac{\sigma_{L}^{\uparrow} - \sigma_{R}^{\uparrow}}{\sigma_{L}^{\uparrow} + \sigma_{R}^{\uparrow}}$$ $$= \frac{\sigma_{L}^{\uparrow} - \sigma_{L}^{\downarrow}}{\sigma_{L}^{\uparrow} + \sigma_{L}^{\downarrow}}$$ - In the polarized p + p collision, the A_N is defined by a left-right cross section asymmetry of a specific particle or event. - A_N of the forward (6 $\langle \eta \rangle$) neutron enables us to study the spin-involved diffractive production mechanism. ### Forward neutron production - One pion exchange (OPE) model well explains the forward neutron production with an absorptive correction. - The pion exchange is dominant rather than ρ and a_2 exchange, and $p \rightarrow \Delta \rightarrow n$ process. ### Forward neutron A_N J. Phys. Conf. Ser. 295, 012097. - Non-zero neutron A_N was observed at the IP12 experiment. However, the OPE model couldn't explain the finite neutron A_N . - The neutron A_N has been measured by the PHENIX experiment with three different collision energies. ### Forward neutron A_N $$A_{N} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$$ $$= \frac{\sum_{X} |\langle cX|T| \uparrow \rangle|^{2} - \sum_{X} |\langle cX|T| \downarrow \rangle|^{2}}{\sum_{X} |\langle cX|T| \uparrow \rangle|^{2} + \sum_{X} |\langle cX|T| \downarrow \rangle|^{2}}$$ $$= \frac{-2\operatorname{Im} \sum_{X} \langle cX|T| - \rangle \langle + |T^{\dagger}|cX\rangle}{\sum_{X} |\langle cX|T| + \rangle|^{2} + \sum_{X} |\langle cX|T| - \rangle|^{2}}$$ - π exchange: spin flip - a₁ exchange: spin non-flip - The OPE model introduced a_1 exchange to explain the neutron A_N . - The π and a_1 exchange model predicts that the A_N increases in magnitude with p_T without x_F dependence. ### Unfolded forward neutron A_N PRD 105, 032004. - \blacksquare Recently, the neutron A_N at 200 GeV has been unfolded. - The unfolded data explicitly shows the increasing A_N following the p_T without a clear x_F dependence as the model predicted. ### Neutron measurement at RHICf - RHICf experiment measured the neutron A_N in the highest p_T coverage ever measured ~ 1 GeV/c. - \blacksquare RHICf data can not only be compared with the PHENIX data but also test the π and a₁ exchange model in a wide p_T coverage. ### RHIC forward (RHICf) experiment #### **STAR** experiment - Operated at RHIC STAR in polarized p + p collisions at √s = 510 GeV in June 2017. - 18 m away from the IP. - $0.2 < x_F < 1.0$ $0.0 < p_T < 1.0 \text{ GeV/c.}$ **RHICf** ### **Neutron measurement** #### Side view #### Front view 17 tungsten absorbers (44 X_0 , 1.6 λ_{int}), 16 GSO plates, and 4 layers of GSO bars (1 mm dimension). - $\sigma_{\rm E}$ ~30% and $\sigma_{\rm P_T}$ ~0.025 GeV/c for 200 GeV neutron. - Shower trigger is operated when the energy deposits of any three successive layers are larger than 45 MeV. 9/16 # Analysis procedure ### Neutron/photon separation - L_{20%} and L_{90%} are defined by the longitudinal depth of the detector where the accumulated energy deposit reaches 20% and 90% of the total energy deposit. - Neutron was separated from the photon in the $L_{90\%}$ versus $L_{20\%}$ plot. ### x_F and p_T unfolding - RHICf detector has insufficient interaction length (1.6 λ_{int}). - For a prior, neutron was uniformly generated to the detector. - Two-dimensional Bayesian unfolding was done to get the true distribution. ### Background A_N subtraction Neutron candidate = neu + pho + charged Difference between • and • → Background photon ratio. Difference between • and — → Background hadron ratio. - In this analysis, neutron includes neutral hadrons (Λ ~5%, K<1%, ...). - Three QGSJET-II 04 samples, total, without photon, and neutron, were unfolded to estimate the background ratio. - Photon background A_N from photon-enhanced sample. Large uncertainty of $A_N^{Meas.} \sim 1$ to the background hadron A_N . ## A_N of the very forward neutron - Systematic uncertainties of beam center, polarization, background A_N subtraction, and unfolding were considered. - In the lower p_T region, the A_N s are flat showing no x_F dependence. - In the higher p_T region, it seems that there is a x_F dependence. ### A_N of the very forward neutron - In higher x_F , the A_N increases in magnitude with p_T up to 1 GeV/c. - There seems a x_F dependence in the higher p_T region. ### Summary - In June 2017, the RHICf experiment has measured the A_N for (very) forward neutron production in the highest p_T range ever measured. - In the higher x_F , the A_N increases almost proportional to the p_T as the model predicted. - In the lower p_T , no x_F dependence was observed. - In the higher p_T , a x_F dependence was observed. - More precise background estimation will be done for the final result. # Backup