

DIS2022: XXIX International Workshop on Deep-Inelastic Scattering and Related Subjects

May 02 - 06, 2022

Hard exclusive $\pi^-\Delta^{++}$ electroproduction off the proton with CLAS12

A first potential access to p-Δ transition GPDs

Stefan Diehl

Justus Liebig University Giessen
University of Connecticut

05/04/2022

Motivation

$$ep \rightarrow e\Delta^{++}\pi^{-} \rightarrow ep\pi^{+}\pi^{-}$$

Factorisation expected for:

-t / Q² << 1 and Q² > M_{Δ}^2 x_B fixed

- \rightarrow Provides access to p- Δ transition GPDs
- → 3D structure of the Δ resonance and of the excitation process
 - π[±] is expected to be especially sensitive to the tensor charge of the resonance

Motivation

classical GPDs:

quark pol.

	N/q	U	L	T
いって	U	H		$ar{E}_T$
	L		\widetilde{H}	\widetilde{E}_T
ึกเห	T	E	\widetilde{E}	H_T, \widetilde{H}_T

- 4 chiral even GPDs
- 4 chiral odd GPDs

- 8 helicity non-flip trans. GPDs (twist 2)
- \rightarrow 3 are dominating in the large N_C limit
- → Connection to proton-proton GPDs via symmetry considerations
- → Description of leading twist efects / longitudinal photons → σ_L
 - → First theoretical works available
- 8 helicity flip trans. GPDs
- → Needed for twist-3 sector (non-diag DVMP)
- → Theory in progress (no publ. so far)

non-diag. DVCS

non-diag. DVMP

Why is $\pi^-\Delta^{++}$ special?

non-diagonal DVCS

$$\gamma * p \rightarrow N * \gamma \rightarrow p \ meson \ \gamma$$

$$500 \qquad \Delta \qquad 200 \qquad 300$$

$$200 \qquad 3rd \ res$$

$$100 \qquad 3rd \ res$$

$$100 \qquad 1.2 \qquad 1.4 \qquad 1.6 \qquad 1.8 \qquad 2 \qquad 2.2$$

$$M_{n\pi} \quad [GeV]$$

other non-diagonal DVMP channels

$$ep \rightarrow e\Delta^0\pi^+ \rightarrow e(p\pi^-)\pi^+$$

$$e(p\pi^-)\pi^+$$
2000
$$\Delta$$
1500
$$\Delta$$
1500
$$\Delta$$
1000

$$ep \rightarrow e\Delta^{++}\pi^{-} \rightarrow ep\pi^{+}\pi^{-}$$
 $I_{z} = +3/2$

 \rightarrow The p π^+ final state can **only** be populated by Δ -resonances

500

 \rightarrow Large gap between $\Delta(1232)$ and higher resonances

Hard Exclusive π⁻ Electroproduction and BSA

Cross section (longitudinally pol. beam and unpol. target):

$$2\pi \frac{d^2\sigma}{dt d\phi} = \frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt} + \epsilon \cdot \cos(2\phi) \frac{d\sigma_{TT}}{dt} + \sqrt{2\epsilon(1+\epsilon)} \cdot \cos(\phi) \frac{d\sigma_{LT}}{dt} + h \cdot \sqrt{2\epsilon(1-\epsilon)} \cdot \sin(\phi) \frac{d\sigma_{LT'}}{dt}$$

$$\sigma = \sigma_0 (1 + A_{UU}^{\cos(2\phi)} \cos(2\phi) + A_{UU}^{\cos(\phi)} \cos(\phi) + h A_{LU}^{\sin(\phi)} \sin(\phi))$$

$$BSA(t,\phi,x_B,Q^2) = \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-} = \frac{A_{LU}^{\sin\phi}\sin\phi}{1 + A_{UU}^{\cos\phi}\cos\phi + A_{UU}^{\cos2\phi}\cos2\phi}$$

$$A_{LU}^{\sin\phi} = \frac{\sqrt{2\epsilon(1-\epsilon)} \ \sigma_{LT'}}{\sigma_T + \epsilon \sigma_L}$$

CLAS12 Experimental Setup in Hall B at JLAB

V. Burkert et al., Nucl. Instrum. Meth.A 959 (2020) 163419

- → Data recorded with CLAS12 during fall 2018 and spring 2019
- → 10.6 / 10.2 GeV e⁻ beam → ~87 % average polarization → liquid H₂ target
 - → Analysed data ~ 35 % of the approved RG-A beam time

Event Selection and Kinematic Cuts

$$ep \rightarrow e\Delta^{++}\pi^{-} \rightarrow ep\pi^{-}X$$

$$X = \pi^{+}$$

 \rightarrow 2 σ cut around the missing π ⁺

Kinematic cuts:

$$Q^2 > 1.5 \text{ GeV}^2$$
 W > 2 GeV y < 0.75

 $-t < 1.5 \text{ GeV}^2$ (only the forward region)

Event Selection and Background Rejection

Event Selection and Background Rejection

Missing π⁺ after M(π⁺π⁻) > 1.1 GeV Missing π⁺ after M(π⁺π⁻) > 1.1 GeV and M(pπ⁺) < 1.3 GeV

- \rightarrow Selecting the Δ events, allows only one π in addition
- → Sample is cleaned up automatically

Monte Carlo Simulations

2 MC samples have been used:

a) Semi-inclusive DIS MC

- \rightarrow Does not contain the π - Δ ++ production in "forward" kinematics
- \rightarrow Contains nonres. background as well as ρ production and other potential BG channels
- → Used to estimate background shape and contaminations

b) Exclusive $\pi^-\Delta^{++}$ MC

- → Phase space simulation with a weight added to match experimental data
- \rightarrow Δ peak with PDG mass and FWHM
- → Both MCs are processed through the full simulation and reconstruction chain

Event Selection and Background Estimate

Event Selection and Background Estimate

Resulting Beam Spin Asymmtries (Q²-X_B integrated)

Background Subtraction

- Based on the obtained S/B ratio and based on the asymmetry of the sideband, the contribution of the non-resonant background has been subtracted.
- As a crosscheck, a bin-by-bin background subtraction has been performed with a fit of the signal and background function in each phi bin and for each helicity state.
 - → A good agreement of the two methods has been found.

Q² - x_B Integrated Result

<u>Different sources of systematic uncertainty have been studied:</u>
beam polarisation, background subtraction, fiducial volume, extraction method,
acceptance, bin migration, radiative effects

Multidimensional Results

Conclusion and Outlook

- Hard exclusive π⁻Δ⁺⁺ production can be well measured with CLAS12
- The obtained BSA is clearly negative and \sim 2 times larger than for the hard exclusive π^+ production.
- The extracted BSA is a potential first "clean" observable sensitive to p- Δ transition GPDs
- Theory predictions are so far only available for twist-2 transition GPDs
 - → Extension of the framework to the twist-3 sector needed

