Proton Mass Decompositions in QCD

(Andreas Metz, Temple University)

- Motivation
- Energy momentum tensor (EMT)
- Mass decompositions (sum rules)
- Numerics for proton mass sum rules
- Summarizing comparison

Based on: S. Rodini, A.M., B. Pasquini, JHEP 09 (2020) 067, arXiv:2004.03704
A.M., B. Pasquini, S. Rodini, PRD 102 (2020) 114042, arXiv:2006.11171
C. Lorcé, A.M., B. Pasquini, S. Rodini, JHEP 11 (2021) 121, arXiv:2109.11785

Motivation

- Different proton mass sum rules in QCD \rightarrow How do they compare to each other ?
- Example 1: 4-term decomposition (Ji, 1994, 1995, with small re-arrangement)

$$
\begin{aligned}
\mathcal{H}_{q[\mathrm{Ji}]} & =\left(\psi^{\dagger} i \boldsymbol{D} \cdot \boldsymbol{\alpha} \psi\right)_{R[\mathrm{Ji}]} & & \text { (quark kinetic plus potential energy })_{[\mathrm{Ji}]} \\
\mathcal{H}_{m} & =(m \bar{\psi} \psi)_{R} & & \text { quark mass term } \\
\mathcal{H}_{g[\mathrm{Ji}]} & =\frac{1}{2}\left(E^{2}+B^{2}\right)_{R[\mathrm{Ji}]} & & \text { (gluon energy })_{[\mathrm{Ji}]} \\
\mathcal{H}_{a} & =\frac{1}{4}\left(\gamma_{m}(m \bar{\psi} \psi)_{R}+\frac{\beta}{2 g}\left(F^{2}\right)_{R}\right) & & \text { anomaly contribution }
\end{aligned}
$$

- Example 2: 3-term decomposition (Rodini, AM, Pasquini, 2020 / AM, Rodini, Pasquini, 2020)

$$
\mathcal{H}_{q}=\left(\psi^{\dagger} i \boldsymbol{D} \cdot \boldsymbol{\alpha} \psi\right)_{R}
$$

$$
\mathcal{H}_{m}=(m \bar{\psi} \psi)_{R} \quad \text { quark mass term }
$$

$$
\mathcal{H}_{g}=\frac{1}{2}\left(E^{2}+B^{2}\right)_{R} \quad \text { gluon energy }
$$

(i) either, operators identical but at least one group made a mistake concerning \mathcal{H}_{a}
(ii) or, meaning of two operators $\left(\mathcal{H}_{q}, \mathcal{H}_{g}\right)$, generally, is different (\rightarrow this talk) (but still: derivation of operators? / interpretation of parton energy terms ?)

Energy Momentum Tensor

- Interpretation of EMT

- Symmetric (gauge invariant) EMT in QCD

$$
\begin{aligned}
& T^{\mu \nu}=T_{q}^{\mu \nu}+T_{g}^{\mu \nu} \\
& T_{q}^{\mu \nu}=\frac{i}{4} \bar{\psi} \gamma^{\{\mu \stackrel{\leftrightarrow}{D}}{ }^{\nu\}} \psi \quad\left(\gamma^{\{\mu} \stackrel{\leftrightarrow}{D}{ }^{\nu\}}=\gamma^{\mu} \stackrel{\leftrightarrow}{D} \nu+\gamma^{\nu} \stackrel{\leftrightarrow}{D}{ }^{\mu}\right) \\
& T_{g}^{\mu \nu}=-F^{\mu \alpha} F_{\alpha}^{\nu}+\frac{g^{\mu \nu}}{4} F^{2}
\end{aligned}
$$

- $T_{q}^{\mu \nu}$ contains gluon field through $\stackrel{\leftrightarrow}{D}^{\mu}=\vec{\partial}^{\mu}-\overleftarrow{\partial}^{\mu}-2 i g A_{a}^{\mu} T_{a}$
- Total EMT not renormalized, but $T_{i}^{\mu \nu}$ require renormalization
- Trace (anomaly) of EMT in QCD
(Collins, Duncan, Joglekar, 1977 / Nielsen, 1977 / ...)

$$
T^{\mu}{ }_{\mu}=\underbrace{(m \bar{\psi} \psi)_{R}}_{\text {classical trace }}+\underbrace{\gamma_{m}(m \bar{\psi} \psi)_{R}+\frac{\beta}{2 g}\left(F^{2}\right)_{R}}_{\text {trace anomaly }}
$$

- $T^{\mu}{ }_{\mu}$, classical trace (quark mass term), and trace anomaly are UV-finite
- Quark and gluon contribution to trace of EMT (Hatta, Rajan, Tanaka, 2018 / Tanaka 2018)

$$
\begin{aligned}
T^{\mu}{ }_{\mu} & =\left(T_{q, R}\right)^{\mu}{ }_{\mu}+\left(T_{g, R}\right)^{\mu}{ }_{\mu} \\
\left(T_{q, R}\right)^{\mu}{ }_{\mu} & =(1+y)(m \bar{\psi} \psi)_{R}+x\left(F^{2}\right)_{R} \\
\left(T_{g, R}\right)^{\mu}{ }_{\mu} & =\left(\gamma_{m}-y\right)(m \bar{\psi} \psi)_{R}+\left(\frac{\beta}{2 g}-x\right)\left(F^{2}\right)_{R}
\end{aligned}
$$

x and y related to finite parts of renormalization constants \rightarrow scheme dependence

- Different scheme choices (Rodini, AM, Pasquini, 2020 / AM, Pasquini, Rodini, 2020)
- MS scheme / MS scheme (Hatta, Rajan, Tanaka, 2018 / Tanaka 2018)
- D1 scheme: $x=0, y=\gamma_{m}$
- D2 scheme: $x=y=0$

D-type schemes look natural

EMT and Proton Mass

- Forward matrix element of total EMT (for spin-0 and spin- $\frac{1}{2}$)

$$
\left\langle T^{\mu \nu}\right\rangle \equiv\langle P| T^{\mu \nu}|P\rangle=2 P^{\mu} P^{\nu}
$$

- Relation to proton mass ($n=\frac{1}{2 M}$, depends on normalization of state)

$$
M=n\left\langle T^{\mu}{ }_{\mu}\right\rangle=\left.n\left\langle T^{00}\right\rangle\right|_{\mathrm{P}=0}=\left.\frac{\left\langle H_{\mathrm{QCD}}\right\rangle}{\langle P \mid P\rangle}\right|_{\mathrm{P}=0} \quad\left(\int d^{3} \mathrm{x} T^{00}=H_{\mathrm{QCD}}\right)
$$

- Forward matrix element of $T_{i, R}^{\mu \nu}(\mathrm{Ji}, 1996)$

$$
\left\langle T_{i, R}^{\mu \nu}\right\rangle=2 P^{\mu} P^{\nu} A_{i}(0)+2 M^{2} g^{\mu \nu} \bar{C}_{i}(0)
$$

- $A_{i}(0), \bar{C}_{i}(0)$ are gravitational FFs at $t=0$
- conservation of (full) EMT implies

$$
A_{q}(0)+A_{g}(0)=1 \quad \bar{C}_{q}(0)+\bar{C}_{g}(0)=0
$$

- in forward limit, matrix elements of EMT fully determined by two numbers only (emphasized also in Lorcé, 2017)

2-Term Sum Rule by Hatta, Rajan, Tanaka

(Hatta, Rajan, Tanaka, JHEP 12 (2018) 008 / Tanaka, JHEP 01 (2019) 120)

- Sum rule based on decomposition of $T^{\mu}{ }_{\mu}$

$$
M=\bar{M}_{q}+\bar{M}_{g}=n\left(\left\langle\left(T_{q, R}\right)^{\mu}{ }_{\mu}\right\rangle+\left\langle\left(T_{g, R}\right)^{\mu}{ }_{\mu}\right\rangle\right)
$$

- Recall operators

$$
\begin{aligned}
& \left(T_{q, R}\right)_{\mu}^{\mu}=(1+y)(m \bar{\psi} \psi)_{R}+x\left(F^{2}\right)_{R} \\
& \left(T_{g, R}\right)_{\mu}^{\mu}=\left(\gamma_{m}-y\right)(m \bar{\psi} \psi)_{R}+\left(\frac{\beta}{2 g}-x\right)\left(F^{2}\right)_{R}
\end{aligned}
$$

- Using D-type schemes

$$
\begin{array}{ll}
\left.\left(T_{q, R}\right)^{\mu}{ }_{\mu}\right|_{\mathrm{D} 1}=\left(1+\gamma_{m}\right)(m \bar{\psi} \psi)_{R} & \left.\left(T_{g, R}\right)_{\mu}^{\mu}\right|_{\mathrm{D} 1}=\frac{\beta}{2 g}\left(F^{2}\right)_{R} \\
\left.\left(T_{q, R}\right)^{\mu}{ }_{\mu}\right|_{\mathrm{D} 2}=(m \bar{\psi} \psi)_{R} & \left.\left(T_{g, R}\right)^{\mu}{ }_{\mu}\right|_{\mathrm{D} 2}=\gamma_{m}(m \bar{\psi} \psi)_{R}+\frac{\beta}{2 g}\left(F^{2}\right)_{R}
\end{array}
$$

2-Term Sum Rule by Lorcé

(Lorcé, EPJC 78, 120 (2018))

- Sum rule based on decomposition of T^{00}

$$
M=U_{q}+U_{g}=n\left(\left\langle T_{q, R}^{00}\right\rangle+\left\langle T_{g, R}^{00}\right\rangle\right)
$$

- Renormalized operators (in dimensional regularization) (Rodini, AM, Pasquini, 2020)

$$
\begin{array}{ll}
T_{q, R}^{00}=(m \bar{\psi} \psi)_{R}+\left(\psi^{\dagger} i \boldsymbol{D} \cdot \boldsymbol{\alpha} \psi\right)_{R} & \text { total quark energy } \\
T_{g, R}^{00}=\frac{1}{2}\left(E^{2}+B^{2}\right)_{R} & \text { gluon energy }
\end{array}
$$

- Interpretation looks clean (component of EMT, and operator form)
- Relation of parton energies to EMT form factors

$$
U_{i}=M\left(A_{i}(0)+\bar{C}_{i}(0)\right)
$$

- Measurement of U_{i} requires two observables ("indirect")
- $A_{i}(0)=\left\langle x_{i}\right\rangle$ (parton momentum fractions)
- information about $\bar{C}_{i}(0)$ from EMT trace

3-Term Sum Rule

(Rodini, AM, Pasquini, JHEP 09 (2020) 067 / AM, Rodini, Pasquini, PRD 102 (2020) 114042)

- Sum rule based on decomposition of T^{00}

$$
M=M_{q}+M_{m}+M_{g}=n\left(\left\langle\mathcal{H}_{q}\right\rangle+\left\langle\mathcal{H}_{m}\right\rangle+\left\langle\mathcal{H}_{g}\right\rangle\right)
$$

- Renormalized operators

$$
\begin{aligned}
\mathcal{H}_{q} & =\left(\psi^{\dagger} i \boldsymbol{D} \cdot \boldsymbol{\alpha} \psi\right)_{R} & & \text { quark (kinetic plus potential) energy } \\
\mathcal{H}_{m} & =(m \bar{\psi} \psi)_{R} & & \text { quark mass term } \\
\mathcal{H}_{g} & =\frac{1}{2}\left(E^{2}+B^{2}\right)_{R} & & \text { gluon energy }
\end{aligned}
$$

- 3-term sum rule can be considered refinement of 2-term sum rule by Lorcé

$$
M_{q}+M_{m}=U_{q} \quad M_{g}=U_{g}
$$

- M_{m} is UV finite, has a clear interpretation, and has been studied frequently
- Interpretation looks clean

> 4-Term Sum Rule by Ji
> (Ji, PRL 74, 1071 (1995) and PRD 52, 271 (1995))

- Sum rule based on decomposition of T^{00} into traceless part and trace part

$$
\begin{aligned}
& T^{\mu \nu}=\underbrace{\left(T^{\mu \nu}-\hat{T}^{\mu \nu}\right)}_{\text {traceless part }}+\underbrace{\hat{T}^{\mu \nu}}_{\text {trace part }} \\
& \hat{T}^{\mu \nu}=\frac{1}{4} g^{\mu \nu} T_{\alpha}^{\alpha} \quad \bar{T}^{\mu \nu}=T^{\mu \nu}-\hat{T}^{\mu \nu}
\end{aligned}
$$

- Motivation: $\hat{T}^{\mu \nu}$ and $\bar{T}^{\mu \nu}$ are UV finite
- (Consequence of) virial theorem
(Ji, 1995 / Ji, Liu, Schäfer, 2021 / Lorcé, AM, Pasquini, Rodini, 2021 / ...)

$$
M=E_{T}+E_{S}=\frac{3}{4} M+\frac{1}{4} M \quad\left(E_{T} \leftrightarrow \bar{T}^{00} \quad E_{S} \leftrightarrow \hat{T}^{00}\right)
$$

decomposition follows from $\left\langle T^{\mu \nu}\right\rangle=2 P^{\mu} P^{\nu}$

- Final 4-term sum rule obtained by
(i) decomposition of \bar{T}^{00} and \hat{T}^{00} into quark and gluon contributions
(ii) re-arrangement in quark sector (re-shuffling between traceless and trace part)
- 4-term decomposition of T^{00}

$$
M=M_{q[\mathrm{Ji}]}+M_{m}+M_{g[\mathrm{Ji}]}+M_{a}=n\left(\left\langle\mathcal{H}_{q[\mathrm{Ji}]}\right\rangle+\left\langle\mathcal{H}_{m}\right\rangle+\left\langle\mathcal{H}_{g[\mathrm{Ji}]}\right\rangle+\left\langle\mathcal{H}_{a}\right\rangle\right)
$$

- Renormalized operators (Ji, 1995)

$$
\begin{aligned}
\mathcal{H}_{q[\mathrm{Ji}]} & =\left(\psi^{\dagger} i \boldsymbol{D} \cdot \boldsymbol{\alpha} \psi\right)_{R[\mathrm{Ji}]} & & \text { (quark kinetic plus po } \\
\mathcal{H}_{m} & =(m \bar{\psi} \psi)_{R} & & \text { quark mass term } \\
\mathcal{H}_{g[\mathrm{~J}]} & =\frac{1}{2}\left(E^{2}+B^{2}\right)_{R[\mathrm{~J}]} & & \text { (gluon energy) }{ }_{[\mathrm{Ji}]} \\
\mathcal{H}_{a} & =\frac{1}{4}\left(\gamma_{m}(m \bar{\psi} \psi)_{R}+\frac{\beta}{2 g}\left(F^{2}\right)_{R}\right) & & \text { anomaly contribution }
\end{aligned}
$$

- compared to 3 -term decomposition, \mathcal{H}_{a} comes in addition
- Comparison with our renormalized operators

$$
\begin{aligned}
\mathcal{H}_{g[\mathrm{~J}]} & =\mathcal{H}_{g}-\frac{1}{4}\left(T_{g, R}\right)^{\mu}{ }_{\mu} \\
& =\frac{1}{2}\left(E^{2}+B^{2}\right)_{R}+\frac{y-\gamma_{m}}{4}(m \bar{\psi} \psi)_{R}-\frac{1}{4}\left(\frac{\beta}{2 g}-x\right)\left(F^{2}\right)_{R}
\end{aligned}
$$

- similar discussion holds for $\mathcal{H}_{q[\mathrm{~J}]}$
- interpretation of $\mathcal{H}_{g[\mathrm{Ji}]}$ and $\mathcal{H}_{q[\mathrm{Ji}]}$?
- also, interpretation of $\mathcal{H}_{g[\mathrm{~J} \mathrm{i}}, \mathcal{H}_{q[\mathrm{Ji}]}$ due to pressure terms? (Lorcé, 2017)
- More recent result in dimensional regularization (Ji, Liu, Schäfer, 2021)

$$
\begin{aligned}
\mathcal{H}_{m} & =(m \bar{\psi} \psi)_{R} \\
\mathcal{H}_{a} & =\frac{1}{4}\left(\gamma_{m}(m \bar{\psi} \psi)_{R}+\frac{\beta}{2 g}\left(F^{2}\right)_{R}\right) \\
\left(\mathcal{H}_{q}+\mathcal{H}_{g}\right)_{[\mathrm{JLS}]} & =\left(\psi^{\dagger} i \boldsymbol{D} \cdot \boldsymbol{\alpha} \psi+\frac{2-2 \varepsilon}{4-2 \varepsilon} E^{2}+\frac{2}{4-2 \varepsilon} B^{2}\right)_{R}
\end{aligned}
$$

- this expression differs from original operator form
- we find exact agreement with our result by using (Lorcé, AM, Pasquini, Rodini, 2021)

$$
\begin{aligned}
\varepsilon\left(E^{2}-B^{2}\right) & =-\frac{\varepsilon}{2} F^{2}=\gamma_{m}(m \bar{\psi} \psi)_{R}+\frac{\beta}{2 g}\left(F^{2}\right)_{R} \quad \text { leading to } \\
\left(\mathcal{H}_{q}+\mathcal{H}_{g}\right)_{[\mathrm{JLS}]} & =\mathcal{H}_{q}+\mathcal{H}_{g}-\mathcal{H}_{a} \quad \text { implying } \\
\mathcal{H}_{m}+\mathcal{H}_{a}+\left(\mathcal{H}_{q}+\mathcal{H}_{g}\right)_{[\mathrm{JLS}]} & =\mathcal{H}_{m}+\mathcal{H}_{q}+\mathcal{H}_{g} \quad \text { (our result) }
\end{aligned}
$$

Numerical Results

- First input: parton momentum fractions $\left\langle x_{i}\right\rangle$, related to traceless parton operators

$$
\frac{3}{2} M^{2} a=\left\langle\bar{T}_{q, R}^{00}\right\rangle \quad \frac{3}{2} M^{2}(1-a)=\left\langle\bar{T}_{g, R}^{00}\right\rangle \quad\left(a=\left\langle x_{q}\right\rangle \quad 1-a=\left\langle x_{g}\right\rangle\right)
$$

- Second input: quark mass term

$$
2 M^{2} b=\left(1+\gamma_{m}\right)\left\langle(m \bar{\psi} \psi)_{R}\right\rangle \rightarrow 2 M^{2}(1-b)=\frac{\beta}{2 g}\left\langle\left(F^{2}\right)_{R}\right\rangle
$$

- to the extent we know b, we know $\left\langle\left(F^{2}\right)_{R}\right\rangle$, and vice versa
- Example: 3-term sum rule in terms of a and b

$$
\begin{aligned}
& M_{q}=\frac{3}{4} M a+\frac{1}{4} M\left(\frac{(y-3) b}{1+\gamma_{m}}+x(1-b) \frac{2 g}{\beta}\right) \\
& M_{m}=M \frac{b}{1+\gamma_{m}} \\
& M_{g}=\frac{3}{4} M(1-a)+\frac{1}{4} M\left[\frac{\left(\gamma_{m}-y\right) b}{1+\gamma_{m}}+\left(1-x \frac{2 g}{\beta}\right)(1-b)\right]
\end{aligned}
$$

- Momentum fractions from CT18NNLO parameterization (at $\mu=2 \mathrm{GeV}$)

$$
a=0.586 \pm 0.013 \quad 1-a=0.414 \pm 0.013
$$

- Quark mass term from sigma terms

$$
\sigma_{u}+\sigma_{d}=\sigma_{\pi N}=\frac{\langle P| \hat{m}(\bar{u} u+\bar{d} d)|P\rangle}{2 M} \quad \sigma_{s}=\frac{\langle P| m_{s} \bar{s} s|P\rangle}{2 M} \quad \sigma_{c}=\frac{\langle P| m_{c} \bar{c} c|P\rangle}{2 M}
$$

- Scenario A: sigma terms from phenomenology
(Alarcon et al, 2011, 2012 / Hoferichter et al, 2015)

$$
\left.\sigma_{\pi N}\right|_{\mathrm{ChPT}}=\left.(59 \pm 7) \mathrm{MeV} \quad \sigma_{s}\right|_{\mathrm{ChPT}}=(16 \pm 80) \mathrm{MeV}
$$

- Scenario B: sigma terms from lattice QCD (Alexandrou et al, 2019)

$$
\begin{aligned}
\left.\sigma_{\pi N}\right|_{\mathrm{LQCD}} & =\left.(41.6 \pm 3.8) \mathrm{MeV} \quad \sigma_{s}\right|_{\mathrm{LQCD}}=(39.8 \pm 5.5) \mathrm{MeV} \\
\left.\sigma_{c}\right|_{\mathrm{LQCD}} & =(107 \pm 22) \mathrm{MeV}
\end{aligned}
$$

- main difference between scenarios: including or not σ_{c}
- Dependence on EMT renormalization scheme, for 3-term sum rule ($\mu=2 \mathrm{GeV}$, numbers in units of GeV)

		MS	$\overline{\mathrm{MS}}_{1}$	$\overline{\mathrm{MS}}_{2}$	D 1	D 2
Scenario A	M_{m}	0.075 ± 0.080				
	M_{g}	0.555 ± 0.036	0.669 ± 0.047	0.686 ± 0.048	0.502 ± 0.035	0.507 ± 0.029
	M_{q}	0.234 ± 0.006	0.135 ± 0.003	0.120 ± 0.003	0.286 ± 0.006	0.272 ± 0.008
Scenario B	M_{m}	0.187 ± 0.023				
	M_{g}	0.517 ± 0.017	0.617 ± 0.020	0.631 ± 0.020	0.465 ± 0.017	0.479 ± 0.015

- considerable numerical scheme dependence (similar for 2-term sum rules)
- scheme dependence no new phenomenon
- no scheme dependence for 4-term sum rule
- contribution of M_{m} is $\sim 8 \%$ for Scenario A, $\sim 20 \%$ for Scenario B
- quark mass term for heavy quarks significant
(Shifman, Vainshtein, Zakharov, 1978 / AM, Pasquini, Rodini, 2020 / Liu, 2021 /...)

Further Comparison of Mass Sum Rules

- Number of independent terms, and required input parameters (a, b)
-2 terms $T_{\mu}^{\mu} \quad M=\bar{M}_{q}+\bar{M}_{g} \quad \rightarrow 1$ indep. term (b)
-2 terms $T^{00} \quad M=U_{q}+U_{g} \quad \rightarrow 1$ indep. term (a, b)
-3 terms $T^{00} \quad M=M_{q}+M_{m}+M_{g} \quad \rightarrow 2$ indep. terms (a, b)
- 4 terms $T^{00} \quad M=M_{q[\mathrm{Ji}]}+M_{m}+M_{g[\mathrm{Ji}]}+M_{a} \rightarrow 2$ indep. terms only (a, b)

$$
M_{q[\mathrm{~J}]}-\frac{3 \gamma_{m}}{4+\gamma_{m}} M_{m}+M_{g[\mathrm{Ji}]}-3 M_{a}=0 \quad \text { (additional relation) }
$$

- Relation to experiment
- $M_{g[\mathrm{Ji}]}$ directly related to $\left\langle x_{g}\right\rangle=1-a$
- $M_{q[\mathrm{Ji}]}$ not directly related to $\left\langle x_{q}\right\rangle=a$ (admixture from b, "indirect" measurement) \rightarrow no advantage of 4-term sum rule over other sum rules
- "side-remark": measuring $\left\langle F^{2}\right\rangle$ (at the EIC) relevant for all sum rules (further constraint on b)
- Dependence on scheme (x and y)
- 2-term and 3-term sum rules: operators don't change, numbers may change
- 4-term sum rule: numbers don't change, operators may change
- Closest agreement in D2 scheme ($x=y=0$)
- relation between quark contribution to trace and quark mass term

$$
\bar{M}_{q}^{\mathrm{D} 2}=M_{m}
$$

- relation between parton energies

$$
M_{q}^{\mathrm{D} 2}=M_{q[\mathrm{Ji}]} \quad M_{g}^{\mathrm{D} 2}=M_{g[\mathrm{Ji}]}+M_{a}
$$

Two different perspectives:
(i) $M_{g[\mathrm{Ji}]}$ has no clear interpretation (operator form, components of EMT)
$\rightarrow M_{a}$ must be added to get meaningful quantity (our view)
(ii) anomaly contribution M_{a} hidden in $M_{g}^{\mathrm{D} 2}$ (Ji, 2021)

- Scale dependence
- "simple" for 4-term sum (given by scale dependence of A_{i})
- generally, more complicated (but known) for other sum rules (due \bar{C}_{i})
- in D2 scheme, scale dependence equally "simple" for all sum rules
- Numerical comparison in D2 scheme (u,d,s in quark mass term)

