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GPD extraction from exclusive experiments

Consider a process on a nucleon N, in which a hard scale
|Q2| ≫ ΛQCD is present.
Factorize the amplitude into perturbatively computable hard part
and process-independent Generalised Parton Distributions.

Deeply Virtual Compton Scattering: e−N → e−Nγ.
The relevant hard sub-process: γ∗N → γN,

Timelike Compton Scattering: γN → γ∗N,

Deeply Virtual Meson Production: γ∗N → M + N,

The considered process:

Photoproduction of photon pairs with large invariant mass:

γN → γγN
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Why study this process?

The hard part is a 2 → 3 reaction – new type of processes
studied within the framework of QCD collinear factorization.

The amplitude depends only on charge-odd combinations of
GPDs (only valence quarks contribute).

No contribution from the badly known chiral-odd quark GPDs
at the leading twist.
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Kinematics
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SγN = (p1 + q)2, u′ = (q2 − q)2,

M2
γγ = (q1 + q2)2, t = (p1 − p2)

2.

ξ ≈
M2

γγ
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Factorization

GPDq(x , ξ, t)

T q

(x + ξ)p+ (x − ξ)p+

N
(
p1 ≈ (1 + ξ)p+

)
N
(
p2 ≈ (1− ξ)p+

)
ξ ∈ (0, 1)

The full amplitude:

T =
∑
q

∫ 1

−1
dx T q

(
x , ξ, ...

)
GPDq(x , ξ, t).



The leading order analysis

Pedrak et al. Phys. Rev. D 96 (2017) [arXiv:1708.01043]

GPDq(x , ξ, t)

(x + ξ)p+ (x − ξ)p+

LO results: the process can be studied at intense quasi-real photon
beam facilities in JLab or EIC.

https://arxiv.org/abs/1708.01043v3


Next-to-leading order results

NLO factorization and the amplitude

Phys. Rev. D 104 (2021) [2110.00048]

Figure: Considered 1-loop diagrams

https://arxiv.org/abs/2110.00048


Next-to-leading order results

2- and 3-point loops → relatively simple results.

5-point loop integral can be reduced to a sum 4-point ones.

Finite part of a 4-point diagrams: expressible in terms of

Fnab :=

∫ 1

0
dy

∫ 1

0
dz yazb

(
α1y + α2z + α3yz + iϵ

)−n
,

G :=

∫ 1

0
dy

∫ 1

0
dz z2

(
α1y + α2z + α3yz + iϵ

)−2

× log
(
α1y + α2z + α3yz + iϵ

)
.

Large computational power is needed to get stable results.
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PARTONS

PARtonic Tomography Of Nucleon Software
B. Berthou et al., Eur. Phys. J. C 78, 478 (2018),
hep-ph/1512.06174

http://partons.cea.fr

https://arxiv.org/abs/1512.06174
http://partons.cea.fr


Considered GPD models

0
2
4
6
8
10
12
14
16
18
20

0.0001 0.001 0.01 0.1 1

e u
3 H
u(
-)
+
e d
3 H
d(
-)

x

-3
-2
-1
0
1
2
3
4
5
6

0.0001 0.001 0.01 0.1 1

x

e u
3 H
u(
-)
+
e d
3 H
d(
-)

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0.0001 0.001 0.01 0.1 1

x

e u
3 H
u(
-)
+
e d
3 H
d(
-)

0

5

10

15

20

25

30

35

0.0001 0.001 0.01 0.1 1

x

e u
3 E
u(
-)
+
e d
3 E
d(
-)

0

1

2

3

4

5

6

7

8

0.0001 0.001 0.01 0.1 1

x

e u
3 E
u(
-)
+
e d
3 E
d(
-)

0

0.5

1

1.5

2

2.5

3

3.5

4

0.0001 0.001 0.01 0.1 1

x

e u
3 E
u(
-)
+
e d
3 E
d(
-)

Figure: Comparison between GK [hep-ph/0708.3569] (solid magenta) and
MMS [hep-ph/1304.7645] (dotted green) GPD models for
t = −0.1 GeV2 and the scale µ2

F = 4 GeV2.

https://arxiv.org/abs/0708.3569
https://arxiv.org/abs/1210.6975


Hq,Eq - vector GPDs, H̃q, Ẽq - axial GPDs.

H =
∑
q

∫ 1

−1
dx T q(x , ξ, ...)Hq(x , ξ, t),

E , H̃, Ẽ defined in the analogous way.

Contribution from axial GPDs is small at LO, we neglect it in the
NLO analysis.
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H =
∑
q

∫ 1

−1
dx T q(x , ξ, ...)Hq(x , ξ, t),
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Stability of results
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Figure: H as a function of u′ for SγN = 20 GeV2, M2
γγ = 4 GeV2 (which

corresponds to ξ ≈ 0.12) and t = t0 ≈ −0.05 GeV2.
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Figure: H as a function of SγN for M2
γγ = 4 GeV2, t = t0 and

u′ = −1 GeV2.



Stability of results
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Figure: H as a function of Mγγ for SγN = 20 GeV2, t = t0 and
u′ = −1 GeV2.



Differential cross section: u′-dependence
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Figure: Differential cross-section as a function of u′ for SγN = 20 GeV2,
M2

γγ = 4 GeV2 (ξ ≈ 0.12) and t = t0 ≈ −0.05 GeV2 for proton target.
LO: solid (dashed) red line, NLO: dotted (dash-dotted) blue line for GK
(MMS) GPD model.



Differential cross section: SγN-dependence
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Figure: Differential cross-section as a function of SγN (bottom axis) and
the corresponding ξ (top axis) for M2

γγ = 4 GeV2, t = t0 and

u′ = −1 GeV2.



Differential cross section: SγN-dependence
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Figure: The same, but for neutron target.



Differential cross section: M2
γγ-dependence
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Figure: Differential cross-section as a function of M2
γγ (bottom axis) and

the corresponding ξ (top axis) for SγN = 20 GeV2, t = t0 and
u′ = −1 GeV2.



Differential cross section: ϕ-dependence
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Figure: Differential cross-section as a function of ϕ – the angle between
the initial photon polarization and one of the final photon momentum in
the transverse plane for SγN = 20 GeV2, M2

γγ = 4 GeV2 (which

corresponds to ξ ≈ 0.12), u′ = −1 GeV2 and t = t0 ≈ −0.05 GeV2.



Summary

γN → γγN can provide valuable information about
charge-odd combinations of GPDs,

We performed a next-to-leading order analysis of the diphoton
photoproduction process,

NLO corrections result in smaller cross sections,

Due to complicated form of the NLO amplitude, a large
computational power is needed to reduce the numerical noise.



Summary

γN → γγN can provide valuable information about
charge-odd combinations of GPDs,

We performed a next-to-leading order analysis of the diphoton
photoproduction process,

NLO corrections result in smaller cross sections,

Due to complicated form of the NLO amplitude, a large
computational power is needed to reduce the numerical noise.



Summary

γN → γγN can provide valuable information about
charge-odd combinations of GPDs,

We performed a next-to-leading order analysis of the diphoton
photoproduction process,

NLO corrections result in smaller cross sections,

Due to complicated form of the NLO amplitude, a large
computational power is needed to reduce the numerical noise.



Summary

γN → γγN can provide valuable information about
charge-odd combinations of GPDs,

We performed a next-to-leading order analysis of the diphoton
photoproduction process,

NLO corrections result in smaller cross sections,

Due to complicated form of the NLO amplitude, a large
computational power is needed to reduce the numerical noise.



Summary

γN → γγN can provide valuable information about
charge-odd combinations of GPDs,

We performed a next-to-leading order analysis of the diphoton
photoproduction process,

NLO corrections result in smaller cross sections,

Due to complicated form of the NLO amplitude, a large
computational power is needed to reduce the numerical noise.



Backup: Transverse target asymmetry

ϕ∆T ,ST – relative angle between transverse momentum of outgoing
nucleon and the initial polarization vector.
The moment of this asymmetry:

Asin(ϕ∆T ,ST
) =

1

π

∫ 2π

0
d(ϕ∆T ,ST )A sin(ϕ∆T ,ST ) , (1)

LO: the asymmetry is exactly 0, while at NLO it is small, but
non-vanishing.
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Figure: The transverse target asymmetry Asin(ϕ∆T ,ST
) as a function of −t

for SγN = 20 GeV2, M2
γγ = 4 GeV2 (which corresponds to ξ ≈ 0.12)

and u′ = −1 GeV2.


