Phenomenology of diphoton photoproduction at next to leading order

Oskar Grocholski

Deutsches Elektronen-Synchrotron DESY

in collaboration with B. Pire, P. Sznajder, L. Szymanowski and J. Wagner. [arXiv:2204.00396]

XXIX International Workshop on Deep-Inelastic Scattering and Related Subjects

May 3, 2022

Consider a process on a nucleon N, in which a hard scale $|Q^2| \gg \Lambda_{QCD}$ is present.

Consider a process on a nucleon N, in which a hard scale $|Q^2| \gg \Lambda_{QCD}$ is present.

Factorize the amplitude into perturbatively computable hard part and process-independent Generalised Parton Distributions.

Consider a process on a nucleon N, in which a hard scale $|Q^2| \gg \Lambda_{QCD}$ is present.

Factorize the amplitude into perturbatively computable hard part and process-independent Generalised Parton Distributions.

• Deeply Virtual Compton Scattering: $e^-N \to e^-N\gamma$. The relevant hard sub-process: $\gamma^*N \to \gamma N$,

Consider a process on a nucleon N, in which a hard scale $|Q^2| \gg \Lambda_{QCD}$ is present.

Factorize the amplitude into perturbatively computable hard part and process-independent Generalised Parton Distributions.

- Deeply Virtual Compton Scattering: $e^-N \to e^-N\gamma$. The relevant hard sub-process: $\gamma^*N \to \gamma N$,
- Timelike Compton Scattering: $\gamma N \rightarrow \gamma^* N$,

Consider a process on a nucleon N, in which a hard scale $|Q^2| \gg \Lambda_{QCD}$ is present.

Factorize the amplitude into perturbatively computable hard part and process-independent Generalised Parton Distributions.

- Deeply Virtual Compton Scattering: $e^-N \to e^-N\gamma$. The relevant hard sub-process: $\gamma^*N \to \gamma N$,
- Timelike Compton Scattering: $\gamma N \rightarrow \gamma^* N$,
- Deeply Virtual Meson Production: $\gamma^* N \to M + N$,

Consider a process on a nucleon N, in which a hard scale $|Q^2|\gg \Lambda_{QCD}$ is present.

Factorize the amplitude into perturbatively computable hard part and process-independent Generalised Parton Distributions.

- Deeply Virtual Compton Scattering: $e^-N \to e^-N\gamma$. The relevant hard sub-process: $\gamma^*N \to \gamma N$,
- Timelike Compton Scattering: $\gamma N \rightarrow \gamma^* N$,
- Deeply Virtual Meson Production: $\gamma^* N \to M + N$,

The considered process:

Photoproduction of photon pairs with large invariant mass:

$$\gamma N \rightarrow \gamma \gamma N$$

• The hard part is a $2 \rightarrow 3$ reaction – new type of processes studied within the framework of QCD collinear factorization.

- The hard part is a $2 \rightarrow 3$ reaction new type of processes studied within the framework of QCD collinear factorization.
- The amplitude depends only on charge-odd combinations of GPDs (only valence quarks contribute).

- The hard part is a $2 \rightarrow 3$ reaction new type of processes studied within the framework of QCD collinear factorization.
- The amplitude depends only on charge-odd combinations of GPDs (only valence quarks contribute).
- No contribution from the badly known chiral-odd quark GPDs at the leading twist.

Kinematics

Kinematics

Factorization

The full amplitude:

$$\mathcal{T} = \sum_{q} \int_{-1}^{1} dx \, \mathcal{T}^{q}(x, \xi, ...) \operatorname{GPD}^{q}(x, \xi, t).$$

The leading order analysis

Pedrak et al. Phys. Rev. D 96 (2017) [arXiv:1708.01043]

LO results: the process can be studied at intense quasi-real photon beam facilities in JLab or EIC.

NLO factorization and the amplitude

Phys. Rev. D 104 (2021) [2110.00048]

Figure: Considered 1-loop diagrams

ullet 2- and 3-point loops o relatively simple results.

- 2- and 3-point loops → relatively simple results.
- 5-point loop integral can be reduced to a sum 4-point ones.

- 2- and 3-point loops \rightarrow relatively simple results.
- 5-point loop integral can be reduced to a sum 4-point ones.
- Finite part of a 4-point diagrams: expressible in terms of

$$\mathcal{F}_{nab} := \int_0^1 dy \int_0^1 dz \, y^a z^b \Big(\alpha_1 y + \alpha_2 z + \alpha_3 y z + i \epsilon \Big)^{-n},$$

$$\mathcal{G} := \int_0^1 dy \int_0^1 dz \, z^2 \Big(\alpha_1 y + \alpha_2 z + \alpha_3 y z + i \epsilon \Big)^{-2}$$

$$\times \log \Big(\alpha_1 y + \alpha_2 z + \alpha_3 y z + i \epsilon \Big).$$

- 2- and 3-point loops → relatively simple results.
- 5-point loop integral can be reduced to a sum 4-point ones.
- Finite part of a 4-point diagrams: expressible in terms of

$$\mathcal{F}_{nab} := \int_0^1 dy \, \int_0^1 dz \, y^a z^b \Big(\alpha_1 y + \alpha_2 z + \alpha_3 y z + i \epsilon \Big)^{-n},$$

$$\mathcal{G} := \int_0^1 dy \, \int_0^1 dz \, z^2 \Big(\alpha_1 y + \alpha_2 z + \alpha_3 y z + i \epsilon \Big)^{-2}$$

$$\times \log \Big(\alpha_1 y + \alpha_2 z + \alpha_3 y z + i \epsilon \Big).$$

Large computational power is needed to get stable results.

PARTONS

PARtonic Tomography Of Nucleon Software B. Berthou et al., Eur. Phys. J. C 78, 478 (2018), hep-ph/1512.06174

http://partons.cea.fr

Considered GPD models

Figure: Comparison between GK [hep-ph/0708.3569] (solid magenta) and MMS [hep-ph/1304.7645] (dotted green) GPD models for $t=-0.1~{\rm GeV}^2$ and the scale $\mu_F^2=4~{\rm GeV}^2$.

 H^q, E^q - vector GPDs, \tilde{H}^q, \tilde{E}^q - axial GPDs.

 H^q, E^q - vector GPDs, \tilde{H}^q, \tilde{E}^q - axial GPDs.

$$\mathcal{H} = \sum_{q} \int_{-1}^{1} dx \, \mathcal{T}^{q}(x, \xi, ...) H^{q}(x, \xi, t),$$

 $\mathcal{E}, \tilde{\mathcal{H}}, \tilde{\mathcal{E}}$ defined in the analogous way.

 H^q, E^q - vector GPDs, \tilde{H}^q, \tilde{E}^q - axial GPDs.

$$\mathcal{H} = \sum_{q} \int_{-1}^{1} dx \, \mathcal{T}^{q}(x, \xi, ...) H^{q}(x, \xi, t),$$

 $\mathcal{E}, \tilde{\mathcal{H}}, \tilde{\mathcal{E}}$ defined in the analogous way.

Contribution from axial GPDs is small at LO, we neglect it in the NLO analysis.

Stability of results

Figure: \mathcal{H} as a function of u' for $S_{\gamma N}=20~{\rm GeV}^2$, $M_{\gamma \gamma}^2=4~{\rm GeV}^2$ (which corresponds to $\xi\approx 0.12$) and $t=t_0\approx -0.05~{\rm GeV}^2$.

Stability of results

Figure: \mathcal{H} as a function of $S_{\gamma N}$ for $M_{\gamma \gamma}^2=4~{\rm GeV}^2$, $t=t_0$ and $u'=-1~{\rm GeV}^2$.

Stability of results

Figure: \mathcal{H} as a function of $M_{\gamma\gamma}$ for $S_{\gamma N}=20~{\rm GeV^2}$, $t=t_0$ and $u'=-1~{\rm GeV^2}$.

Differential cross section: u'-dependence

Figure: Differential cross-section as a function of u' for $S_{\gamma N}=20~{\rm GeV}^2$, $M_{\gamma\gamma}^2=4~{\rm GeV}^2$ ($\xi\approx 0.12$) and $t=t_0\approx -0.05~{\rm GeV}^2$ for proton target. LO: solid (dashed) red line, NLO: dotted (dash-dotted) blue line for GK (MMS) GPD model.

Differential cross section: $S_{\gamma N}$ -dependence

Figure: Differential cross-section as a function of $S_{\gamma N}$ (bottom axis) and the corresponding ξ (top axis) for $M_{\gamma\gamma}^2=4~{\rm GeV}^2$, $t=t_0$ and $u'=-1~{\rm GeV}^2$.

Differential cross section: $S_{\gamma N}$ -dependence

Figure: The same, but for neutron target.

Differential cross section: $M_{\gamma\gamma}^2$ -dependence

Figure: Differential cross-section as a function of $M_{\gamma\gamma}^2$ (bottom axis) and the corresponding ξ (top axis) for $S_{\gamma N}=20~{\rm GeV}^2$, $t=t_0$ and $u'=-1~{\rm GeV}^2$.

Differential cross section: ϕ -dependence

Figure: Differential cross-section as a function of ϕ – the angle between the initial photon polarization and one of the final photon momentum in the transverse plane for $S_{\gamma N}=20~{\rm GeV}^2$, $M_{\gamma \gamma}^2=4~{\rm GeV}^2$ (which corresponds to $\xi\approx 0.12$), $u'=-1~{\rm GeV}^2$ and $t=t_0\approx -0.05~{\rm GeV}^2$.

• $\gamma N \to \gamma \gamma N$ can provide valuable information about charge-odd combinations of GPDs,

- $\gamma N \rightarrow \gamma \gamma N$ can provide valuable information about charge-odd combinations of GPDs,
- We performed a next-to-leading order analysis of the diphoton photoproduction process,

- $\gamma N \rightarrow \gamma \gamma N$ can provide valuable information about charge-odd combinations of GPDs,
- We performed a next-to-leading order analysis of the diphoton photoproduction process,
- NLO corrections result in smaller cross sections,

- $\gamma N \rightarrow \gamma \gamma N$ can provide valuable information about charge-odd combinations of GPDs,
- We performed a next-to-leading order analysis of the diphoton photoproduction process,
- NLO corrections result in smaller cross sections,
- Due to complicated form of the NLO amplitude, a large computational power is needed to reduce the numerical noise.

Backup: Transverse target asymmetry

 ϕ_{Δ_T,S_T} – relative angle between transverse momentum of outgoing nucleon and the initial polarization vector.

The moment of this asymmetry:

$$\mathcal{A}^{\sin(\phi_{\Delta_{\mathcal{T}},S_{\mathcal{T}}})} = \frac{1}{\pi} \int_0^{2\pi} d(\phi_{\Delta_{\mathcal{T}},S_{\mathcal{T}}}) \mathcal{A} \sin(\phi_{\Delta_{\mathcal{T}},S_{\mathcal{T}}}), \qquad (1)$$

LO: the asymmetry is exactly 0, while at NLO it is small, but non-vanishing.

Backup: Transverse target asymmetry

Figure: The transverse target asymmetry $\mathcal{A}^{\sin(\phi_{\Delta_T,S_T})}$ as a function of -t for $S_{\gamma N}=20~{\rm GeV^2},~M_{\gamma\gamma}^2=4~{\rm GeV^2}$ (which corresponds to $\xi\approx 0.12$) and $u'=-1~{\rm GeV^2}.$