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Consider a process on a nucleon N, in which a hard scale

|@2| > Ngcp is present.

Factorize the amplitude into perturbatively computable hard part
and process-independent Generalised Parton Distributions.

@ Deeply Virtual Compton Scattering: e~ N — e~ N~.
The relevant hard sub-process: v*N — N,

o Timelike Compton Scattering: YN — v*N,
@ Deeply Virtual Meson Production: v*N — M + N,

The considered process:

@ Photoproduction of photon pairs with large invariant mass:

YN — vy N
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Why study this process?

@ The hard part is a 2 — 3 reaction — new type of processes
studied within the framework of QCD collinear factorization.

@ The amplitude depends only on charge-odd combinations of
GPDs (only valence quarks contribute).

@ No contribution from the badly known chiral-odd quark GPDs
at the leading twist.
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The leading order analysis

Pedrak et al. Phys. Rev. D 96 (2017) [arXiv:1708.01043] J

LO results: the process can be studied at intense quasi-real photon
beam facilities in JLab or EIC.


https://arxiv.org/abs/1708.01043v3

Next-to-leading order results

NLO factorization and the amplitude
Phys. Rev. D 104 (2021) [2110.00048]

Figure: Considered 1-loop diagrams


https://arxiv.org/abs/2110.00048
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Next-to-leading order results

@ 2- and 3-point loops — relatively simple results.
@ 5-point loop integral can be reduced to a sum 4-point ones.

@ Finite part of a 4-point diagrams: expressible in terms of

1 1 n
Frab = / dy / dz y2zb (aly + a2z + azyz + ie) ,
0 0

1 1 )
g ::/ dy / dz z° (Oé1y+ozzz+a3yz+ ie)
0 0

X log (a1y+ a2z + azyz + ie).

Large computational power is needed to get stable results. J




PARTONS

PARtonic Tomography Of Nucleon Software
B. Berthou et al., Eur. Phys. J. C 78, 478 (2018),

hep-ph/1512.06174

—ARTONS

http://partons.cea.fr
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http://partons.cea.fr

Considered GPD models
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Figure: Comparison between GK [hep-ph/0708.3569] (solid magenta) and
MMS [hep-ph/1304.7645] (dotted green) GPD models for
t = —0.1 GeV? and the scale u? = 4 GeV>.


https://arxiv.org/abs/0708.3569
https://arxiv.org/abs/1210.6975
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HY9, E9 - vector GPDs, /:IC’, E9 - axial GPDs.

1
H = Z/_l dx T9(x,&, .. ) HI(x, &, 1),
q

E,H, & defined in the analogous way.

Contribution from axial GPDs is small at LO, we neglect it in the
NLO analysis.



Stability of results
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Figure: H as a function of v’ for S,y = 20 GeV?, ’V’% =4 GeV? (which

corresponds to £ ~ 0.12) and t = ty ~ —0.05 GeV?.
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Figure: H as a function of S,y for M2 =4 GeV?, t =ty and
v =—1 GeV?.
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Figure: H as a function of M., for S,y = 20 GeV?, t = t; and
v = —1 GeV2.



Differential cross section: u'-dependence
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Figure: Differential cross-section as a function of v’ for S,n =20 GeVz,
M,%W =4 GeV? (£ ~0.12) and t = ty ~ —0.05 GeV? for proton target.
LO: solid (dashed) red line, NLO: dotted (dash-dotted) blue line for GK
(MMS) GPD model.



Differential cross section: S, y-dependence

~ E
©O
> 01 001
[} 2 T :
O
3 15
S
(o] 1_
X
o= 05}
oS
o35 ol
T 10 100 400
© S [Gev?]

Figure: Differential cross-section as a function of S,y (bottom axis) and
the corresponding £ (top axis) for M,%W =4 GeV?, t =ty and
v =—1 GeV?.



Differential cross section: S, y-dependence
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Figure: The same, but for neutron target.



Differential cross section: M%—dependence
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Figure: Differential cross-section as a function of M3 (bottom axis) and

the corresponding & (top axis) for S,y = 20 GeV?, t = t; and
u = —1 GeVZ.



Differential cross section: ¢-dependence

Figure: Differential cross-section as a function of ¢ — the angle between
the initial photon polarization and one of the final photon momentum in
the transverse plane for S,y = 20 GeV?, M2, =4 GeV? (which
corresponds to £ & 0.12), v’ = —1 GeV? and t = ty ~ —0.05 GeV?2.
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@ YN — yvN can provide valuable information about
charge-odd combinations of GPDs,

@ We performed a next-to-leading order analysis of the diphoton
photoproduction process,

@ NLO corrections result in smaller cross sections,

@ Due to complicated form of the NLO amplitude, a large
computational power is needed to reduce the numerical noise.



Backup: Transverse target asymmetry

da, s, — relative angle between transverse momentum of outgoing
nucleon and the initial polarization vector.
The moment of this asymmetry:

_ 1 2w .
ASIH(¢AT,ST) — d(¢AT7ST)ASIn(¢AT75T)’ (1)

™ Jo

LO: the asymmetry is exactly 0, while at NLO it is small, but
non-vanishing.
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Figure: The transverse target asymmetry AS"#a7.57) as a function of —t
for S,y = 20 GeV?, M2, =4 GeV? (which corresponds to & ~ 0.12)
and ' = —1 GeV?.



