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Abstract

The energy-momentum tensor (EMT) and corresponding gravitational form factors (GFFs) provide
us information about the internal structure like spin, mass and spatial densities of the proton. The
Druck gravitational (D-term) form factor is related to the mechanical stability of the proton and gives
information about the spatial distributions of the forces inside the hadron. In this work, we study the
GFFs in the framework of the light-front quark diquark model. The model has been successful to derive
various properties of protons. We investigate the three-dimensional spatial distributions of proton as an
Abel image of two-dimensional distributions in this model[1]. We explicitly show the global and local
stability conditions which are satisfied by both 2D and 3D distributions in our model. We compare our
results with the chiral quark soliton model, JLab and lattice data.
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1 Introduction

The scattering of the proton by gravitational field is described by gravitational form factors (GFFs) which
explains mass, spin and force distributions inside the proton [1, 2]. Gravitational form factors are parame-
terized in terms of the matrix element of the energy-momentum tensor between the incoming and outgoing
proton states. Each element of the energy-momentum tensor give information about matter coupling to
the gravitational field. The total symmetric EMT for a system (quarks and gluons) can be parameterized
in terms of three GFFs: A(q2), J(q2) = (1/2)(A(q2) +B(q2)) and D(q2) as [3]〈

p′
∣∣∣Θ̂µν

QCD(0)
∣∣∣ p〉 = ū (p′)

[
A(q2)P

µP ν

M + J(q2) iP
{µσν}α∆α

M

+D(q2)
4M

(
∆µ∆ν − ηµν∆2

)]
u(p), (1)

The GFFs contains the essential information on the internal structure of the proton and could be
extracted through hard exclusive processes like deeply virtual Compton scattering as the second moments
of Generalized Parton distribution functions (GPDs) [4, 5]. The GFFs A(q2) and J(q2) give the mass and
angular momentum of the proton and are constrained at q2 = 0, i.e., A(0) = 1 and J(0) = (1/2)(A(0) +
B(0)) = 1/2 [6]. While, The D-term, which is related to the mechanical properties of the proton, is
extracted through the spatial-spatial component of the energy-momentum tensor, is deeply related to the
stability of the proton and is unconstrained at q2 = 0 [7, 8].

2 Light front quark diquark model

In quark-diquark model, We assume that the virtual incoming photon is interacting with a active valence
quark and the two other spectator valence quarks form a diquark of spin 0, called a scalar diquark.
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Therefore the proton state |P, S⟩ having momentum P and spin S, can be represented as a two-particle
Fock-state as following

|P ;±⟩ =
∑
q

∫
dxd2p⊥

2(2π)3
√
x(1− x)

×
[
ψq±
+ (x,p⊥)

∣∣∣∣+1

2
, 0;xP+,p⊥

〉
+ ψq±

− (x,p⊥)

∣∣∣∣−1

2
, 0;xP+,p⊥

〉]
, (2)

ψqλN

λq
are light-front wave functions which are given [9] by following expressions:

ψq+
+ (x,p⊥) = φq(1) (x,p⊥) , ψq+

− (x,p⊥) = −p
1 + ip2

xM
φq(2) (x,p⊥)

ψq−
+ (x,p⊥) =

p1 − ip2

xM
φq(2) (x,p⊥) , ψq−

− (x,p⊥) = φq(1) (x,p⊥) (3)

where φ
(i=1,2)
q (x,p⊥) are the wave functions predicted by the soft-wall AdS/QCD and can be written

as [10]

φq(i) (x,p⊥) = N (i)
q

4π

κ

√
log(1/x)

1− x
xa

(i)
q (1− x)b

(i)
q exp

[
−
p2
⊥

2κ2
log(1/x)

(1− x)2

]
; (4)

We assume the AdS/QCD scale parameter κ = 0.4 GeV and an initial scale µ20 = 0.32 GeV2. The
parameters of the model are extracted using the electromagnetic properties of the proton, as discussed in
detail in [11].

3 Extraction of GFFs

The Form factors Au+d(Q2), Bu+d(Q2) and Du+d(Q2) in the LFQDQ model can be parametrized in terms
of structure integrals as [12, 13, 14]

Au+d(Q2) = Iu+d
1 (Q2), Bu+d(Q2) = Iu+d

2 (Q2) (5)

Du+d(Q2) = − 1

Q2

[
2M2Iu+d

1 (Q2)−Q2Iu+d
2 (Q2)− Iu+d

3 (Q2)
]
, (6)

where the full mathematical expressions of the integrals Iu+d
i (Q2) are given in [12, 15] It turns out that

the form factor Du+d(Q2) can be parameterized by the multipole function as [14],

Du+d(Q2) =
a

(1 + bQ2)c
, (7)

where these evolved fitted parameters a, b and c are given as a = Du+d(0) = −1.521, b = 0.531 and c =
3.026 [15] while at initial scale a = Du+d(0) = −18.8359, b = 2.2823 and c = 2.7951 . In order to perform
the scale evolution, we employed the higher-order perturbative parton evolution toolkit (HOPPET) [16]
with the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations of QCD with NNLO.

4 EMT distributions

The form factors appearing in matrix elements of the EMT encode spatial densities via Fourier transforms.
The two-dimensional light front energy, angular momentum, pressure and shear distributions are related
to the GFFs by following relations respectively:

E(2D)(x⊥) = P+Ã(x⊥), ρ
(2D)
J (x⊥) = −1

2
x⊥

d

dx
J̃(x⊥) (8)
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Figure 1: Left plot represents 2πx⊥ weighted 2D mass distribution and right plot represents 4πr2 weighted
3D mass distribution at evolution scale µ2 = 4 GeV2.
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Figure 2: Left plot represents 2πx⊥ weighted 2D angular momentum distribution and right plot represents
4πr2 weighted 3D angular momentum distribution at evolution scale µ2 = 4 GeV2.
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2x⊥

d
dx⊥
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D̃ (x⊥)
)
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, (9)

where

F̃ (x⊥) =

∫
d2∆

(2π)2
e−i∆⊥.x⊥F (−∆2

⊥), (10)

and x⊥ and ∆⊥ are the position and momentum vectors in the two-dimensional plane that are perpen-
dicular to the direction that the proton is travelling. Similarly, the three-dimensional EMT distributions
in the Breit frame can be obtained by taking the GFFs and performing a three-dimensional inverse fourier
transform on them. In this study [15], we derived the 3D Breit frame EMT distributions from the 2D
light front EMT distributions using the following inverse Abel transformation relations between them [17].
These distributions were derived from the 2D light front EMT distributions.
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π

∫∞
r
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x2
⊥−r2

, ρJ(r) = − 2
π r

2
∫∞
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3x2

⊥
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1√
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s(r) = − 2
π r

2
∫∞
r dx⊥

d
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⊥

)
1√
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, 2
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(11)
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Figure 3: Left plot represents 2πx⊥ weighted 2D pressure distribution and right plot represents 4πr2

weighted 3D pressure distribution at evolution scale µ2 = 4 GeV2.
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Figure 4: Left plot represents 2πx⊥ weighted 2D shear force distribution and right plot represents 4πr2

weighted 3D shear force distribution at evolution scale µ2 = 4 GeV2.

In Fig. 1 and Fig. 2 we obtain the 2D and 3D mass and angular momentum distribution in our model
and compared them with χQSM model [18], and showed that 2D and 3D distributions are Abel images
of each other. Similarly in Fig. 3 and Fig. 4 our results for 2D and 3D pressure and shear distribution are
presented and compared whih available results for χQSM [18], JLab [4, 19] and Lattice simulations [20],
respectively. Our model results have higher peak values than the compared model results. Corresponding
2D and 3D radii for each distribution are shown in Table 1. Explicit calculation of each observable can be
found in [15].

The definitions of the tangential and normal force fields in three-dimensional Breit frame are given
as [7, 18],

Fn(r) = 4πr2
[
2

3
s(r) + p(r)

]
, Ft(r) = 4πr2

[
−1

3
s(r) + p(r)

]
(12)

In Fig. 5 we present our model results for normal and tangential force fields and compared them with other
models. One nodal point in the tangential force shows the mechanical stability of the proton, whereas the
positively distributed normal force field satisfies von Laue stability conditions.
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P(0)
(
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)
E(0)

(
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)
(x⊥)0 (fm)

〈
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〉
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(
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) 〈
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〉
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(
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) 〈
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〉
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(
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)
0.354 1.54 0.34 0.38 0.21 0.167

p(0)
(
GeV/fm3

)
ε(0)

(
GeV/fm3

)
r0(fm)

〈
r2
〉
J

(
fm2

) 〈
r2
〉
mass

(
fm2

) 〈
r2
〉
mech

(
fm2

)
4.76 2.02 0.43 0.51 0.32 0.251

Table 1: Different EMT distribution parameter values for the proton in 2D LF and 3D BF are as follows:
(E(0),ϵ(0)) -The energy distributions at the proton center, (P(0),p(0)) -pressure distribution at the proton
center, ((x⊥)0,r0)- nodal pressure points, and (⟨x2⊥⟩, ⟨r2⟩) the mean square radii of the mass, angular
momentum, and mechanical.
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Figure 5: Three dimensional normal forces and tangential forces in the left and right panel respectively at
evolution scale µ2 = 4 GeV2.

Conclusion

In this paper, the 2D LF distributions are evaluated in a scalar quark- diquark model of proton and then
the 3D distributions are obtained in the model using the Abel transformation. Our results are compared
with the χQSM , JLab and lattice predictions. The stability conditions are found to be satisfied with the
LFQDQ model. The normal and shear force distributions are also evaluated in the LFQDQ model and are
found to be consistent with lattice and other model predictions.
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