The azimuthal asymmetries in ρ^0 production in UPCs

Yajin Zhou

Collaborators: Jian Zhou, Hongxi Xing, Cheng Zhang, Yoshikazu Hagiwara based on papers: JHEP10(2020)064, PRD104, 094021 (2021)

May 5, 2022

Ultraperipheral collisions(UPCs)

relativistically moving ions will introduce electromagnetic field.

Equivalent photon approximation(EPA) 1924, Fermi;

Weizäscker and Williams, 1930's;

$$\begin{split} n(\omega) &= \frac{4 Z^2 \alpha_e}{\omega} \int \frac{d^2 k_\perp}{(2\pi)^2} k_\perp^2 \left[\frac{F(k_\perp^2 + \omega^2/\gamma^2)}{(k_\perp^2 + \omega^2/\gamma^2)} \right]^2 \\ \sigma_{A_1 A_2 \to A_1 A_2 X}^{WW} &= \int d\omega_1 d\omega_2 n_{A_1}(\omega_1) n_{A_2}(\omega_2) \sigma_{\gamma\gamma \to X}(\omega_1, \omega_2) \end{split}$$

$$\gamma - \gamma$$
: $d\sigma \propto Z^4$
 $\gamma - A$: $d\sigma \propto Z^2$

But! strong interaction dominant in center collisions

UPC:

Two nuclei physically miss each other, interact (only) electromagnetically

pic from Peter Steinberg's talk, Mon clean background

Photon TMD

photons can be formulated in the context of TMD factorization:

$$\int \frac{2dy^- d^2y_\perp}{x P^+(2\pi)^3} e^{ik\cdot y} \langle P|F_+^\mu(0)F_+^\nu(y)|P\rangle\Big|_{y^+=0} = \delta_\perp^{\mu\nu} f_1^\gamma(x,k_\perp^2) + \left(\frac{2k_\perp^\mu k_\perp^\nu}{k_\perp^2} - \delta_\perp^{\mu\nu}\right) h_1^{\perp\gamma}(x,k_\perp^2),$$

Mulders, Rodrigues, PRD63(2001)

A nucleus moves along P^+, A^+ dominant, $F_+^\mu \propto k_\perp^\mu A^+, F_+^\mu F_+^\nu \propto k_\perp^\mu k_\perp^\nu A^+ A^+,$ implies,

$$f_1^{\gamma}(x, k_{\perp}^2) = h_1^{\perp \gamma}(x, k_{\perp}^2)$$

coherent photons are linearly polarized

how to probe: azimuthal asymmetry see e.g., Boer, Mulders, Pisano, PRD 80 (2009) 094017

dilepton production in UPCs

Azimuthal asymmetries in $\gamma\gamma \rightarrow e^+e^-$

	Measured	QED calculation
Tagged UPC	$16.8\% \pm 2.5\%$	16.5%
60%-80%	$27\% \pm 6\%$	34.5%

C. Li, J. Zhou and YZ, 2020

STAR collaboration, PRL127, 052302 (2021), arXiv:1910.12400

coherent photons are linearly polarized is **Verified** by STAR

Motivation

- The fact that the coherent photons in UPCs are highly linearly polarized can be used as a probe to study QCD phenomenology.
- Significant $\cos 2\phi$ and $\cos 4\phi$ asymmetries for ρ^0 meson production in UPCs have been observed by STAR collaboration.
- Huge amounts of data for ρ^0 at STAR and LHC.

ρ production in UPC: illustration diagram

$$\phi=p_\perp^\pi\wedge q_\perp$$

 q_{\perp} : ρ^0 transverse momentum

 p_{\perp}^{π} : π 's transverse momentum.

observable:

$$\langle \cos(n\phi) \rangle = \frac{\int \frac{d\sigma}{d\mathcal{P}.S.} \cos(n\phi) \; d\mathcal{P}.S.}{\int \frac{d\sigma}{d\mathcal{P}.S.} d\mathcal{P}.S.}$$

scattering amplitude

Use color dipole model to calculate the scattering amplitude

For polarization averaged calculation, see:

M. G. Ryskin, 93

S. J. Brodsky, L. Frankfurt, J. F. <u>Gunion</u>, A. H. Mueller and

M. Strikman, 94

$$\mathcal{A}(\Delta_{\perp}) = i \int d^2 b_{\perp} e^{i\Delta_{\perp} \cdot b_{\perp}} \int \frac{d^2 r_{\perp}}{4\pi} \int_0^1 dz \, \Psi^{\gamma \to q\bar{q}}(r_{\perp}, z, \epsilon_{\perp}^{\gamma})$$

$$\int_{0}^{1} dz \, \Psi^{\gamma \to q\bar{q}}(r_{\perp}, z, \epsilon_{\perp}^{\gamma}) \underbrace{N(r_{\perp}, b_{\perp})} \Psi^{V \to q\bar{q}*}(r_{\perp}, z, \epsilon_{\perp}^{V})$$

photon (vector meson) wave function, calculated in light-cone perturbation theory. polarization dependent.

dipole scattering amplitude. color dipole from nucleus A multi re-scattered with the CGC gluon in nucleus B

joint \tilde{b}_{\perp} and q_{\perp} dependent amplitude

 γ from B produce a pair of quarks (dipole), interact with the CGC gluon in A, produce ρ^0 (inside A due to color confinement)

set the center of nucleus B as the zero point,

 $ilde{b}_{\perp}$: impact parameter, the relative position of the two nuclei in the transverse plane

 b_{\perp} : the position of the produced ho^0 ($\lambda_{
ho} \ll R_{A}$)

 γ from A produce a pair of quarks (dipole), interact with the CGC gluon in B, produce ρ^0 (inside B due to color confinement)

coherent production amplitude:

$$\mathcal{M}(Y,\tilde{b}_\perp) \propto \left[F_B(Y,b_\perp - \tilde{b}_\perp) N_A(Y,b_\perp) + N_B(-Y,b_\perp - \tilde{b}_\perp) F_A(-Y,b_\perp) \right]$$

Fourier transform $b_{\perp} \rightarrow q_{\perp}$,

$$\mathcal{M}(Y, \tilde{b}_{\perp}) \propto \int d^2k_{\perp} d^2\Delta_{\perp} \delta^2(q_{\perp} - \Delta_{\perp} - k_{\perp})$$

$$\left\{ F_B(Y, k_{\perp}) N_A(Y, \Delta_{\perp}) \underbrace{e^{-i\tilde{b}_{\perp} \cdot k_{\perp}}} + F_A(-Y, k_{\perp}) N_B(-Y, \Delta_{\perp}) \underbrace{e^{-i\tilde{b}_{\perp} \cdot \Delta_{\perp}}} \right\},$$

Double slit like interference effect

ho^0 production cross section

$$\begin{split} \frac{d\sigma}{d^2q_\perp dYd^2\tilde{b}_\perp} &= \frac{1}{(2\pi)^4} \int d^2\Delta_\perp d^2k_\perp d^2k'_\perp \delta^2(k_\perp + \Delta_\perp - q_\perp) (\epsilon_\perp^{V*} \cdot \hat{k}_\perp) (\epsilon_\perp^{V} \cdot \hat{k}'_\perp) \Big\{ \int d^2b_\perp \\ &\times e^{i\tilde{b}_\perp \cdot (k'_\perp - k_\perp)} \left[T_A(b_\perp) \mathcal{A}_{in}(Y, \Delta_\perp) \mathcal{A}_{in}^*(Y, \Delta'_\perp) \mathcal{F}(Y, k_\perp) \mathcal{F}(Y, k'_\perp) + (A \leftrightarrow B) \right] \\ &+ \left[e^{i\tilde{b}_\perp \cdot (k'_\perp - k_\perp)} \mathcal{A}_{co}(Y, \Delta_\perp) \mathcal{A}_{co}^*(Y, \Delta'_\perp) \mathcal{F}(Y, k_\perp) \mathcal{F}(Y, k'_\perp) \right] \\ &+ \left[e^{i\tilde{b}_\perp \cdot (\Delta'_\perp - \Delta_\perp)} \mathcal{A}_{co}(-Y, \Delta_\perp) \mathcal{A}_{co}^*(-Y, \Delta'_\perp) \mathcal{F}(-Y, k_\perp) \mathcal{F}(-Y, k'_\perp) \right] \\ &+ \left[e^{i\tilde{b}_\perp \cdot (k'_\perp - k_\perp)} \mathcal{A}_{co}(Y, \Delta_\perp) \mathcal{A}_{co}^*(-Y, \Delta'_\perp) \mathcal{F}(Y, k_\perp) \mathcal{F}(-Y, k'_\perp) \right] \\ &+ \left[e^{i\tilde{b}_\perp \cdot (k'_\perp - \Delta_\perp)} \mathcal{A}_{co}(-Y, \Delta_\perp) \mathcal{A}_{co}^*(Y, \Delta'_\perp) \mathcal{F}(-Y, k_\perp) \mathcal{F}(Y, k'_\perp) \right] \Big\}, \end{split}$$

the interference terms ensure the perfect peak and valley structure

$$(\boldsymbol{\epsilon}_{\perp}^{V*} \cdot \hat{k}_{\perp}) (\boldsymbol{\epsilon}_{\perp}^{V} \cdot \hat{k}_{\perp}') \rightarrow \left[(\hat{k}_{\perp} \cdot \hat{k}_{\perp}') + \cos(2\phi) \left(2(\hat{k}_{\perp} \cdot \hat{q}_{\perp}) (\hat{k}_{\perp}' \cdot \hat{q}_{\perp}) - \hat{k}_{\perp} \cdot \hat{k}_{\perp}' \right) \right],$$

the spin vectors of γ and ρ^0 result in the $\cos 2\phi$ asymmetry

see also W. Zha, J. D. Brandenburg, L.J. Ruan, Z.B. Tang and Z.B. Xu, 2020

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ②

coherent ρ^0 production: compare with STAR

STAR, Phys.Rev.C 96 (2017) 5, 054904

Au Skin depth	Strong interaction radius
Standard value 0.54fm	6.38fm
Fitted to STAR data 0.64fm	6.9fm

H.X. Xing, C. Zhang, J. Zhou and YZ, JHEP10(2020)064

coherent ρ^0 production: compare with STAR

STAR collaboration, arXiv:2204.01625

Isaac Upsal, Wed, WG2

Model II: H.X. Xing, C. Zhang, J. Zhou and YZ, JHEP10(2020)064

$\cos 2\phi$ asymmetry: illustration diagram

$$\langle +1|-1\rangle \sim \cos 2\phi$$

$\cos 2\phi$ asymmetry: numerical results

The linearly polarized photon and the interference effect together make the $\langle \cos(2\phi) \rangle$ shape.

At pA/EIC, no interference term, the first peak absent.

$\cos 4\phi$ asymmetry: STAR experiment

Daniel Brandenburg, QM 2019

$\cos 4\phi$ asymmetry: theory

1. final state soft photon radiation

Y. Hatta, B.W. Xiao, F. Yuan and J. Zhou, PRL(2021) and PRD(2021)

cross section,

$$\frac{d\sigma(q_{\perp})}{d\mathcal{P}.\mathcal{S}.} = \int d^2q'_{\perp} \frac{d\sigma_0(q'_{\perp})}{d\mathcal{P}.\mathcal{S}.} S(q_{\perp} - q'_{\perp})$$

soft factor at leading order:

$$S(l_{\perp}) = \delta(l_{\perp}) + \frac{\alpha_e}{\pi^2 l_{\perp}^2} \left\{ c_0 + 2c_2 \boxed{\cos 2\phi} + 2c_4 \boxed{\cos 4\phi} + \ldots \right\}$$

2. elliptic gluon Wigner distribution

dipole amplitude,

$$N(b_{\perp}, r_{\perp}) \approx 1 - \exp\left[-Q_s^2 \left(b_{\perp}^2\right) r_{\perp}^2 / 4\right] + E\left(b_{\perp}^2, r_{\perp}^2\right) 2 \underbrace{\cos(2\phi_b - 2\phi_r)}_{} \underbrace{\frac{Q_s^2 \left(b_{\perp}^2\right) r_{\perp}^2}{4} e^{-\frac{Q_s^2 \left(b_{\perp}^2\right) r_{\perp}^2}{4}}}_{} e^{-\frac{Q_s^2 \left(b_{\perp}^2\right) r_{\perp}^2}{4}} e^{-\frac{Q_s^2 \left(b_{\perp}^2\right) r_{\perp}^2}{4}} \underbrace{\frac{Q_s^2 \left(b_{\perp}^2\right) r_{\perp}^2}{4}}_{} \underbrace{\frac{Q_s^2 \left(b_{\perp}^2\right) r_{\perp}^2}{4}}_{} e^{-\frac{Q_s^2 \left(b_{\perp}^2\right) r_{\perp}^2}{4}}}_{} \underbrace{\frac{Q_s^2 \left(b_{\perp}^2\right) r_{\perp}^2}{4}}_{} \underbrace{\frac{Q_s^2 \left(b_{\perp}^2\right) r_{\perp}^2}}_{} \underbrace{\frac{Q_s^2 \left(b_{\perp}^2\right) r_{\perp}^2}{4}}_{} \underbrace{\frac{Q_s^2 \left(b_{\perp}^2\right) r_{\perp}^2}}_{} \underbrace{\frac{Q_s^2$$

Y. Hatta, B.-W. Xiao, and F. Yuan, PRL (2016).

cross section,

$$\begin{split} \frac{d\sigma_I}{d\mathcal{P}.\mathcal{S}.} &= \frac{\zeta(1-\zeta)M_\rho\Gamma_\rho|P_\perp|f_{\rho\pi\pi}}{2(2\pi)^7((Q^2-M_\rho^2)^2+M_\rho^2\Gamma_\rho^2)} \int d^2\Delta_\perp d^2k_\perp d^2k_\perp d^2k'_\perp \delta^2(k_\perp+\Delta_\perp-q_\perp) \boxed{\cos(3\phi_P-\phi_k-2\phi_\Delta)\cos(\phi_P-\phi_{k'})} \\ &\left\{ e^{i\tilde{b}_\perp\cdot(k'_\perp-k_\perp)}\mathcal{R}^*(x_2,\Delta'_\perp)\mathcal{E}(x_2,\Delta_\perp)\mathcal{F}(x_1,k_\perp)\mathcal{F}(x_1,k'_\perp)e^{i\tilde{b}_\perp\cdot(\Delta'_\perp-\Delta_\perp)}\mathcal{R}^*(x_1,\Delta'_\perp)\mathcal{E}(x_1,\Delta_\perp)\mathcal{F}(x_2,k'_\perp) \\ &+ e^{i\tilde{b}_\perp\cdot(\Delta'_\perp-k_\perp)}\mathcal{R}^*(x_2,\Delta'_\perp)\mathcal{E}(x_1,\Delta_\perp)\mathcal{F}(x_1,k_\perp)\mathcal{F}(x_2,k'_\perp)e^{i\tilde{b}_\perp\cdot(k'_\perp-\Delta'_\perp)}\mathcal{R}^*(x_1,\Delta'_\perp)\mathcal{E}(x_2,\Delta_\perp)\mathcal{F}(x_2,k'_\perp) \right\} \\ &+c.c. \end{split}$$

for OAM & Wigner distribution study see also Shohini's talk Wed

◆□▶◆御▶◆恵▶◆恵▶ ・恵・釣९3

$\cos 4\phi$ asymmetry: numerical results

QED alone is not adequate to describe the STAR data, elliptic gluon Wigner distribution also contribute to $cos(4\phi)$ asymmetry

Y. Hagiwara, C. Zhang, J. Zhou, YZ, PRD104, 094021 (2021)

at EIC, contribution from the elliptic gluon distribution flip sign due to the absence of the double-slit interference

Summary

- The coherent photons in UPCs are highly linearly polarized can be used as a probe to study QCD phenomenology.
- Diffractive ρ production in UPCs induce $\cos 2\phi$ asymmetry, shape like Young's double slit experiment, consistent with STAR experiment.
- QED effect alone severely underestimates the observed $\cos 4\phi$ asymmetry, might signal the very existence of the nontrivial quantum correlation encoded in elliptic gluon distribution.

Thanks!

