Status and prospects of new Physics searches with the MEGII experiment

Cecilia Voena

INFN Roma

Istituto Nazionale di Fisica Nucleare

on behalf of the MEGII collaboration

XXIX International Workshop on Deep-Inelastic Scattering and Related Subjects DIS 2022 Santiago de Compostela, 2-6 May 2022

Charged Lepton Flavor Violation (cLFV)

- Allowed but unobservable in the Standard Model (with neutrino mass ≠0)
- Enhanced, sometimes just below the experimental limit, in many New Physics (NP) models

 $BR(\mu \rightarrow e\gamma)\Big|_{SM} < 10^{-50}$ new particle neutrino oscillation μ, X- in B 10⁻¹⁰ 10⁻¹¹ μ e $BR(\mu \rightarrow e\gamma)_{\pi_{1}01}$ \tilde{x}^0 10⁻¹ 10-11 ation of cLFV is a clean signal of 10⁻¹⁴ rysics beyond the Standard Mode 10⁻¹⁵ 10 10 10-16 1013 1012 1014 M, (GeV)

Search for NP at the Intensity Frontier

- Probe NP at very high energy scales: $\Lambda > 10^2-10^4$ TeV
- High intensity frontier: complementary to LHC
- Benchmark test for NP Models

Muons golden processes

• Not only muons: т, EDM...

History of cLFV Searches

Principles of $\mu \rightarrow e\gamma$ Searches

- High intensity muon beam stopped in a thin target
- Two types of backgrounds:
 - physical background
 - accidental background from decay products of different muons

RADIATIVE MUON DECAY (RMD)

μ

ACCIDENTAL BACKGROUND

The MEG(II) Location: PSI

- Paul Scherrer Institute
 - continuous muon beam up to few $10^8 \ \mu^{+}/s$

- Multi-disciplinary lab:
 - fundamental research, cancer therapy, muon and neutron sources
 - protons from cyclotron
 (D = 15m, E_{proton} = 590MeV
 P = 1.4MW)

The MEG Experiment for $\mu \rightarrow e\gamma$ Search

MEG BR($\mu \rightarrow e\gamma$) Limit Result

- 7.5 x 10¹⁴ stopped muons in 2009-2013
- 5 discriminating variables: E_e , E_γ , $T_{e\gamma}$, $\theta_{e\gamma}$, $\phi_{e\gamma}$
- Likelihood analysis + frequentistic approach

The MEG Upgrade: MEGII

Same detector concept as in MEG
 Increase beam intensity from 3 x 10⁷ µ/s to 7 x 10⁷ µ/s
 Increase beam intensity from 3 x 10⁷ µ/s to 7 x 10⁷ µ/s

MEGII Detector Highlights: Liquid Xenon

Liquid Xenon Calorimeter with higher granularity in inner face:
 better resolution, better pile-up rejection

- Developed UV sensitive MPPC
 vacuum UV 12x12mm² SiPM
- Commissioned during engineering runs (2017-2021)

Background spectrum measured in 2019 compared to MC assuming different resolutions

MEGII Detector Highlights: Timing Counters

- High granularity:
 - 2 sections of 256 plastic scintillator tiles
 - read by 3x3 mm² SiPM
- Commissioned during 2017-2021 engineering runs
- Reached design resolution σ_T=~35ps

Time resolution (2017 data) as a function of the $e^{\scriptscriptstyle +}$ hits

MEGII Detector Highlights: Drift Chamber

- Single volume drift chamber with 2π coverage
 - low mass single volume
 - 2m long ,1300 sense wires
 - stereo angle
 - high trasparency to TC
- Problems of wire fragility in presence of contaminants+humidity
- Detector successfully operated since 2020 with a gas mixture He:C₄H₁₀ + isopropylic alcool + O₂

Gradient

22 cm

MEGII Detector Highlights: RDC

- Radiative Decay Counter (RDC):
 BC418
 BC418
 - ~50% of accidental background has a photon that comes from a radiative decay
 - detects positron in coincidence with a photon in calorimeter

Performances demonstrated already in 2017 run

- improve sensitivity by ~15%

COBRA magnet

 μ^+ beam

Time difference between an e^+ measured in RDC and a γ in the calorimeter

14

MEGII Detector Highlights: DAQ, Trigger

- Trigger and DAQ are now integrated in a custom designed compact board (WaveDAQ)
- Based on DRS4 chip
- Also provides power and amplification for SiPN
- The full system was successfully operated (

MEGII Calibrations

MEGII Status and Prospects

- Detector commissioned during engineering runs 2017-2021
- All detectors ran with complete readout in MEGII experimental conditions
- Run 2021 has already physics potential
- Everything is ready for the incoming physics data taking time (Summer 2022)
- We plan to reach 6 x 10⁻¹⁴ sensitivity in 3 years of data taking (MEG sensitivity = 5.3 x 10⁻¹³)

Symmetry 13 (2021) 9, 1591

	R_{μ^+}	$\sigma_{p_{e^+}}$	$\sigma_{ heta_{e^+}}$	$\sigma_{E_{\gamma}}$	$\sigma_{x_{\gamma}}$	$\sigma_{t_{\mathrm{e}^+\gamma}}$	ϵ_{e^+}	ϵ_{γ}	S ₉₀
MEG	$3 imes 10^7~s^{-1}$	380 keV/ <i>c</i>	9.4 mrad	2.4%/1.7%	5 mm	122 ps	30%	63%	$5.3 imes 10^{-13}$
MEG II design	$7 imes 10^7~{ m s}^{-1}$	130 keV/ <i>c</i>	5.3 mrad	1.1%/1.0%	2.4 mm	84 ps	70%	69%	$6 imes 10^{-14}$
MEG II updated	$7 imes 10^7~{ m s}^{-1}$	100 keV/ <i>c</i>	6.7 mrad	1.7%/1.7%	2.4 mm	70 ps	65%	69%	$6 imes 10^{-14}$

Not Only $\mu \rightarrow e\gamma$: X17 Search

 An experiment at the Atomki lab (Hungary), observed a 7σ significant excess in the distribution of the e⁺e⁻ relative angle in the nuclear reaction:

⁷Li(p,e⁺e⁻)⁸Be

- This anomaly can be interpreted as a new particle called X17
- MEGII has the opportunity to search for the X17 with:
 - the C-W accelerator used for calibrating the calorimeter to produce nuclear reaction
 - the drift chamber to detect e⁺e⁻ pair (reduced magnetic field)

Not Only $\mu \rightarrow e\gamma$: X17 search

- Preliminary feasibility studies show that $\sim 5\sigma$ sensitivity could be reached in few days data taking
 - First tests done during 2021 and 2022 shutdowns (stability of the setup, trigger...)
 - Measurement foreseen in late 2022

Signal and background (Internal Pair Creation) from MC simulations for 40 hours DAQ (preliminary)

Thank you for the attention

Backup

The PSI Surface Muon Beam

- Decay at rest of π^+ on the target surface
- Select positive muons to avoid caputre ($P_{\mu} \sim 29 \text{ MeV}$)
- It is possible to focalize and stop the muons in a thin target to reduce multiple scattering of the e⁺

Next Generation of $\mu \rightarrow e\gamma$ Searches ?

- Activities around the world to increase the muon beam rate to 10⁹-10¹⁰ muons/s
- Crucial to understand which factors will limit the sensitivity

New Physics Reach

 Limits on the Wilson coefficients of LFV effective operators from present and future cLFV muon processes

	$\operatorname{Br}(\mu^+ \to e^+ \gamma)$		$ \qquad \qquad$	$e^+e^-e^+$	${ m Br}^{ m Au/Al}_{\mu ightarrow e}$		
	$4.2 \cdot 10^{-13}$	$4.0 \cdot 10^{-14}$	$1.0 \cdot 10^{-12}$	$5.0 \cdot 10^{-15}$	$7.0 \cdot 10^{-13}$	$1.0 \cdot 10^{-16}$	
C_L^D	$1.0 \cdot 10^{-8}$	$3.1 \cdot 10^{-9}$	$2.0 \cdot 10^{-7}$	$1.4 \cdot 10^{-8}$	$2.0 \cdot 10^{-7}$	$2.9 \cdot 10^{-9}$	
$C_{ee}^{S \ LL}$	$4.8 \cdot 10^{-5}$	$1.5 \cdot 10^{-5}$	$8.1 \cdot 10^{-7}$	$5.8 \cdot 10^{-8}$	$1.4 \cdot 10^{-3}$	$2.1\cdot 10^{-5}$	
$C^{S \ LL}_{\mu\mu}$	$2.3 \cdot 10^{-7}$	$7.2 \cdot 10^{-8}$	$4.6 \cdot 10^{-6}$	$3.3 \cdot 10^{-7}$	$7.1 \cdot 10^{-6}$	$1.0\cdot 10^{-7}$	
$C_{\tau\tau}^{\dot{S}\ LL}$	$1.2 \cdot 10^{-6}$	$3.7 \cdot 10^{-7}$	$2.4 \cdot 10^{-5}$	$1.7 \cdot 10^{-6}$	$2.4 \cdot 10^{-5}$	$3.5 \cdot 10^{-7}$	
$C_{\tau\tau}^{T\ LL}$	$2.9 \cdot 10^{-9}$	$9.0 \cdot 10^{-10}$	$5.7 \cdot 10^{-8}$	$4.1 \cdot 10^{-9}$	$5.9 \cdot 10^{-8}$	$8.5 \cdot 10^{-10}$	
$C^{S LR}_{\tau\tau}$	$9.4 \cdot 10^{-6}$	$2.9 \cdot 10^{-6}$	$1.8 \cdot 10^{-4}$	$1.3 \cdot 10^{-5}$	$1.9 \cdot 10^{-4}$	$2.7 \cdot 10^{-6}$	
$C_{bb}^{S \ LL}$	$2.8 \cdot 10^{-6}$	$8.6 \cdot 10^{-7}$	$5.4 \cdot 10^{-5}$	$3.8\cdot10^{-6}$	$9.0 \cdot 10^{-7}$	$1.2 \cdot 10^{-8}$	

arXiv:170203020 A. Crivellin et al.

1 column = present best limit 2 column = future limit

....

Future $\mu \rightarrow e$ experiment

- Mu2e and Mu3e are structured in different phases and upgrades have been proposed
- For μ->eγ, preliminary (simulation) studies have been performed for future experiment (after MEG-II)

24

European strategy update @ Granada

Future $\mu \rightarrow e\gamma$ experiment

 A few 10⁻¹⁵ level seems to be within reach for 3 years running with 10⁹ muons/s with

Present CLFV limits

Reaction	Present limit	C.L.	Experiment	Year
$\mu^+ \to e^+ \gamma$	$< 4.2 \times 10^{-13}$	90%	MEG at PSI	2016
$\mu^+ \to e^+ e^- e^+$	$< 1.0 \times 10^{-12}$	90%	SINDRUM	1988
$\mu^- \mathrm{Ti} \to e^- \mathrm{Ti}^{\dagger}$	$< 6.1 \times 10^{-13}$	90%	SINDRUM II	1998
$\mu^- \mathrm{Pb} \to e^- \mathrm{Pb}^{\dagger}$	$< 4.6 \times 10^{-11}$	90%	SINDRUM II	1996
$\mu^{-}\mathrm{Au} \rightarrow e^{-}\mathrm{Au}^{\dagger}$	$< 7.0 \times 10^{-13}$	90%	SINDRUM II	2006
$\mu^{-}\mathrm{Ti} \rightarrow e^{+}\mathrm{Ca}^{*}^{\dagger}$	$< 3.6 \times 10^{-11}$	90%	SINDRUM II	1998
$\mu^+ e^- \to \mu^- e^+$	$< 8.3 \times 10^{-11}$	90%	SINDRUM	1999
$\tau \to e \gamma$	$< 3.3 \times 10^{-8}$	90%	BaBar	2010
$\tau \to \mu \gamma$	$< 4.4 \times 10^{-8}$	90%	BaBar	2010
$\tau \to eee$	$< 2.7 \times 10^{-8}$	90%	Belle	2010
$ au o \mu \mu \mu$	$< 2.1 \times 10^{-8}$	90%	Belle	2010
$ au o \pi^0 e$	$< 8.0 \times 10^{-8}$	90%	Belle	2007
$ au o \pi^0 \mu$	$< 1.1 \times 10^{-7}$	90%	BaBar	2007
$\tau \to \rho^0 e$	$< 1.8 \times 10^{-8}$	90%	Belle	2011
$ au o ho^0 \mu$	$< 1.2 \times 10^{-8}$	90%	Belle	2011
$\pi^0 \to \mu e$	$< 3.6 \times 10^{-10}$	90%	KTeV	2008
$K_L^0 \to \mu e$	$< 4.7 \times 10^{-12}$	90%	BNL E871	1998
$K_L^0 \to \pi^0 \mu^+ e^-$	$< 7.6 \times 10^{-11}$	90%	KTeV	2008
$K^+ \to \pi^+ \mu^+ e^-$	$< 1.3 \times 10^{-11}$	90%	BNL E865	2005
$J/\psi \to \mu e$	$< 1.5 \times 10^{-7}$	90%	BESIII	2013
$J/\psi \to \tau e$	$< 8.3 \times 10^{-6}$	90%	BESII	2004
$J/\psi \to \tau \mu$	$< 2.0 \times 10^{-6}$	90%	BESII	2004
$B^0 \to \mu e$	$< 2.8 \times 10^{-9}$	90%	LHCb	2013
$B^0 \to \tau e$	$< 2.8 \times 10^{-5}$	90%	BaBar	2008
$B^0 \to \tau \mu$	$< 2.2 \times 10^{-5}$	90%	BaBar	2008
$B \to K \mu e^{\ddagger}$	$< 3.8 \times 10^{-8}$	90%	BaBar	2006
$B \to K^* \mu e^{\ddagger}$	$< 5.1 \times 10^{-7}$	90%	BaBar	2006
$B^+ \to K^+ \tau \mu$	$< 4.8 \times 10^{-5}$	90%	BaBar	2012
$B^+ \to K^+ \tau e$	$< 3.0 \times 10^{-5}$	90%	BaBar	2012
$B_s^0 \to \mu e$	$< 1.1 \times 10^{-8}$	90%	LHCb	2013
$\Upsilon(1s) \to \tau \mu$	$< 6.0 \times 10^{-6}$	95%	CLEO	2008
$Z \to \mu e$	$< 7.5 \times 10^{-7}$	95%	LHC ATLAS	2014
$Z \to \tau e$	$< 9.8 \times 10^{-6}$	95%	LEP OPAL	1995
$Z \to \tau \mu$	$< 1.2 \times 10^{-5}$	95%	LEP DELPHI	1997
$h \to e \mu$	$< 3.5 \times 10^{-4}$	95%	LHC CMS	2016
$h \to \tau \mu$	$< 2.5 \times 10^{-3}$	95%	LHC CMS	2017
$h \to \tau e$	$< 6.1 \times 10^{-3}$	95%	LHC CMS	2017

Connection with g_{μ} -2

• Deviation of the anomalous magnetic moment of the muon ($a_{\mu} = g_{\mu}-2$) from SM prediction recently confirmed by FNAL

$$(a_{\mu} = g_{\mu} - \bigvee_{\mu} \bigvee_{\mu}$$

- $\mu \rightarrow e\gamma$ and g_{μ} -2 are intrinsically connected
- Dipole operator in effective field theory

 $\mathcal{H}_{\text{eff}} = c_R^{\ell_f \ell_i} \,\bar{\ell}_f \sigma_{\mu\nu} P_R \ell_i F^{\mu\nu}$

MEG II Target Monitoring System

- Dominant systematic in MEG due to target position and deformation (5% change in upper limit)
- Photogrammetric method to monitor the target during the run has been developed
- Need precision < 100μ m not to affect positron angle resolution

