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VBS

® Vector Boson Scattering (VBS): broad class of process with sensitivity to
the EW sector of the SM and BSM extensions ot it. WW,ZZ WZ,W~, Z~...

® Rich programme of theory + experimental studies at LHC.

® Focus on selecting such events via VBS cuts: require two well separated

jets in addition to diboson final state (suppress s-channel ¢gg — V'V'),

® However not the only way to look for this!
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VBS with rapidity gaps

® Alternative: select diboson final state + no addition track activity in central

detector = VV + rapidity gaps. VETO
A2 Y4
® s-channel: colour flow between | oWt we R
S
V1 ! MY T s ‘

proton = activity! o \“x

® Key example, opposite sign W} ~: > <
: : : : : Y W* oy W

® Aim: by 1mposing veto can dommantly isolate the

pure Photon-Initiated (PI) process®. W ><
® Clean probe of YW (anomalous?) couplings. ) o -

® Can do even better: by tagging intact outgoing protons the PI mechanism 1s

1solated even further! Dedicated detectors installed at ATLLAS + CMS.
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Recent data

® vidence for such ‘semi-exclusive’ W W ~production in leptonic channel

seen by ATLAS + CMS previously.
® Recently: first observation by ATLLAS, at 13 TeV, via rapidity veto.
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® No colour flow between beams =>pass veto.

Number of reconstructed tracks, n.

ATLAS, Phys. Lett. B 816, 136190 (2021)

® Question: how do we model this process?



Modelling WW production

® Any theoretical calculation should: Elastic

Y

D2 D2

* Account for both elastic and inelastic

production.

D1

Val

Inelastic

* Fully account for all contributing diagrams, beyond PI production.

* Systematically account for probability of no additional particle
production, due to MPI.

® [ will report here the first such tull theoretical treatment, including a MC

implementation. For more details see S. Bailey and LHL,
arXiv:2201.08403
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LHL, JHEP 03 (2020) 128

Structure Function Calculation

) = //

® Basic idea: apply ‘structure function’ calculation. d?o ap
X< Lap W
: : dzdy
® Structure functions parameterise the vp — X vertex. )
. . a a gP 2 a 1 a 1 2
® Use same 1dea as for DIS to write: W (p,0) = (97~ L) Wil @)+ (0 + 30°) (7 + 5,4 Wi, @)

Y'p—X ~o(vy — WTw)

Photon 2, ()° o
A - wpr' ! *
1 - )01 )02 / /Mlu/
opp = — [ dzidasd®qr, dge, AT a(Q7)a(Q3) 55— S (g1 + g2 — px)
25 q7 95
D2 D2
L -
pP1 ~~ FQ,L N
® Cross section given in terms of photon density matrices Qi :
p2 ~ FQ,L !
|

P1



® Both elastic and inelastic Flel2 Flin2el

SF's accounted for:

A P '
p O/ </

* Elastic: precisely measured proton EM form factor.
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* Inelastic: qut = 1GeV? W(32ut = 3.5 GeV?
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® ow (non-perturbative) QQ* and/or TW?
region, take direct experimental

determinations.
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LO parton-level:

Beyond PI production

® ST calculation only accounts for pure PI (+ Z-initiated) production.

® Considering e.g. double dissociative (DD) case, this is not the

. — . . .
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only contribution:

D2

p1

- - - -
Lag Lag Lag Lag

Q* = (p — p"*)?
® These non-VBS diagrams are suppressed by at least ~ Q2 / M I%V Z and so on
principle subleading. But:

* The contribution is not necessarily negligible - to be determined.

* More importantly, the pure PI (+Z) contribution is not individually
gauge invariant. For W~ production power counting in Q2 / M I%V, >

can completely break dOWI’l!



o |fb]

. : : :
Breakdown in power counting evident Unitary On-shell

EL SD | DD EL SD | DD

when working in e.g. unitary gauge.
Compare 13 TeV DD cross section with
on-shell approximation for vy — WrwW-

0.704 | 5.01 | 222 || 0.696 | 3.31 | 3.81

® Huge difference! Well known effect, due to longitudinal W polarizations

when all diagrams not included.

® Can rescue appropriate power counting by working in EW axial gauge: longitudinal

W polarizations do not ~ Ey /My ( ).

® But appropriate solution has to be to include all relevant diagrams.
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‘Hybrid’ Calculation

® Apply cutoft above which we include all relevant diagrams. For e.g. SD:

1 - .
2 2
Q7 > Qoye 2 WL, e
WE wt W=
le > Wc2ut K " K
W2, =35GeV? . "

Q% . =1GeV?
® Below cutoff (or even higher W2 .. Q2 ) contribution from non-PI diagrams

cut 2 (elastic)

tiny ( < 0.1%) in any gauge => safely consider PI production as per SF approach.

® Above cutoff include full gauge invariant set of diagrams in parton model.

* As we will see, having control over this low Q2 region crucial for

evaluating no-MPI probability.

* This automatically regulates the Q% — 0 region of collinear ¢ — ¢
emission. Only collinear singularity for such t-channel diagrams.
® A similar approach applied for the DD case ( ).

® Theory uncertainty on the result at the 1% level ( ) - prior to considering S? .
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The Survival Factor

® Possibility of proton-proton MPI to consider.

S\

&S

® ‘Survival factor’ = probability of no additional inelastic hadron-hadron

interactions (MPI), which will fill veto region®.

*if there is colour flow between colliding beams, then probability of gap v. small. We assume for now to be zero.
|



® Will not go into details here, but roughly N .
speaking, survival factor expressed ~ as a cut

on the hadron-hadron impact parameter: b1

S%(by) =~ (b — 2r,) v

b1

with departure from sharp cutoff coming from details of inelastic pp scattering.

® |mpact parameter bi 1s ~ Fourier conjugate to momentum transfer Q2 and so

survival factor depends on this.

* Elastic production: strongly peaked at low Q*(~ high b* ).
Generally outside range of QCD pp interactions.

* Inelastic VP vertex: extends to largerQ? (~ lower b3 ), i.e. lower S . Find:

Sz ~0.854+0.01 > S5y ~ 0.6+ 0.05 > S5 ~ 0.15 £ 0.07

® Thus MPI will tend to suppress DD production, as well as higher Q° region (i.e.

non-PI). Though as we will see not entirely.

® Cannot simply run with MPI on general purpose MC - misses crucial Q° & elastic
vs. inelastic dependence. The application of the hybrid approach 1s key to this.

12



SuperChic 4.1 - MC Implementation

® Results of above calculation implemented in SuperChic 4.1 MC:

* Hybrid (SF + parton-level) calculation of production process.

* Fully differential treatment of no-MPI probability (survival factor).

® Unweighted events can then be passed to Pythia for showering/hadronization of

proton dissociation products.

superchic is hosted by Hepforge, IPPP Durham

SuperChic 4 - A Monte Carlo for Central Exclusive and Photon-Initiated Production

SuperChic is a Fortran based Monte Carlo event generator for exclusive and photon-initiated production in proton

* Home and heavy ion collisions. A range of Standard Model final states are implemented, in most cases with spin

e Code correlations where relevant, and a fully differential treatment of the soft survival factor is given. Arbitrary user-
e References defined histograms and cuts may be made, as well as unweighted events in the HEPEVT, HEPMC and LHE
o Coies formats. For further information see the user manual.

f'/|',<;,. cee)

A list of references can be round here and the code is available here.

Comments to Lucian Harland-Lang < lucian.harland-lang (at) physics.ox.ac.uk >.

https://superchic.hepforge.org
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ATLAS data: comparison

e ATILAS 13 TeV data, with

lepton

cuts + veto on associated tracks 1n:

b2

l.e. after

subtracting EL

BGs includes:

pL > 500MeV, |n| < 2.5

p1

® We therefore need to evaluate all three contributions in SC:

o [fb] (oi/0t0r), WTW ™ EL SD DD Total
No veto, no S? 0.701 (3.5%) | 6.00 (30.3%) | 13.1 (66.2%) | 19.8
Veto, no S? 0.701 (9.2%) | 3.21 (42.3%) | 3.68 (48.5%) | 7.59
Veto, 52 0.565 (18.6%) | 1.87 (61.6%) | 0.599 (19.8%) | 3.03

® To compare with data:

Omeas = 3.13 £ 0.31 (stat.) £ 0.28 (syst.) tb

= Very good agreement! In more detalil....

|4




o [fb] (o /0t0t), WTW ™ EL SD DD Total

No veto, no S? 0.701 (3.5%) | 6.00 (30.3%) | 13.1 (66.2%) | 19.8

Veto, no S* 0.701 (9.2%) | 3.21 (42.3%) | 3.68 (48.5%) | 7.59
Veto, 52 0.565 (18.6%) | 1.87 (61.6%) | 0.599 (19.8%) 3.03i

3.0+ 0.5

® Break down to show impact of veto and survival factor for demonstration:

* Veto (imposed at particle level on SC + Pythia) reduces cross section by

a factor of over ~ 2.
* Survival factor reduces cross section by further factor of over ~ 2.

* In both cases impact on DD largest, EL smallest.

® Proper account of both effects clearly key to matching data.
® What about impact of non-PI?

v/Z 7/22% v %7777
W+ W B
W
W:F

VS. f)//Z W+ +...

v/Z v/Z




® Impact of non-PI: can only sensibly address by working in axial gauge, where

power counting present.

® Alternative: compare with lepton pair production in similar kinematic region.

/% I~
: . )z
® Here impact of non-PI is found ! %7? ) %\iﬁ<
z

to be 1% level at most, and no i v/Z '
1ssue with gauge invariance. p "
S
o [fb] (07/Tvot) EL SD DD Total | [
wHtw— | 0.565 (18.6%) | 1.87 (61.6%) | 0.599 (19.8%) | 3.03 | 4.
[Tl 9.61 (24.0%) | 24.9 (62.5%) | 5.42 (13.5%) | 39.9 | 3.5

1.e. relative contribution from SD + DD 1s ~ 20% larger wrt obBL 4 5D 4 DD

Q

X
f;

pure EL in WTW ™ case. Dominantly due to non-PL.

® Also leads to rather different breakdown between various channels. Crucial to
account for - common previously to assume these are equal in extracting an

‘exclusive’ W W™ signal.



Final Remarks

® Alternative procedure: work in collinear factorization. However the DD
component then requires a NNLO EW calculation + ptF dependence that is

absent 1n our approach. Also not currently possible to evaluate SZ.

® Theory uncertainty dominantly due to survival factor, but largely correlated
with [T 7 possibility to calibrate. Another possibility: select same sign /£ +
with gap (only DD present).

® A way to further test this approach + provide more information is clearly to

tag the protons (ideally both). Then EL more effectively 1solated.

® [n the meantime a ftull account of all effects (non-PI, survival factor...) key

for precision studies, EFT analyses etc.



Summary

* Have described first complete approach to modelling yy+117—-
production with rapidity gaps at the LHC. Process with promising
sensitivity to the EW sector of the SM and beyond.

* Delicate interplay of photon-initiated + non-photon-imitiated
diagrams + MPI effects. Need to account for these if we are to do

precision physics, at least without tagged protons.

* Much work to do, and interesting studies to perform!

Thank you for listening!
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PI + ISR Showering =%

® SF calculation give precision prediction for photon z, Q* 1

_>_

and we would like showering/hadronisation of

dissociation system to respect this.

® No clear off-the-shelf way to do this, so take simplified approach:

* For purposes of LHE record, for inelastic
emission take LO g — g7 vertex ~ .

Q- '

® [SR/FSR will then modity photon 4-momentum. Not 1deal, but for purpose of

* Generate outgoing quark according to

momentum conservation, preserving

photon 4-momentum.

current study sufficient.

® [n addition, must turn off global recoil in Pythia to get realistic result (no

colour connection between beams).

20



Axial gauge

® Gauge fixing term in SM Lagrangian has the form:
1 b, v 1 2
Lor = —5)\n“AZAVn — §A(n - B)* |

where n# 1s arbitrary 4-vector.

® This leads to W, Z longitudinal polarizations that no longer grow with

energy. For n? = 0 have:

M
ey (k) =i n

® [n such a case power counting reintroduced:

P v/Z W
ol _
W:F

>> v/ Z

W:F
v/ Z
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Axial gauge

® Cross sections well behaved (even without veto), and rather close to full

result.
o |fb] | On—=shell | Collinear | Axial | Axial (inc. Z) | Full
EL 0.696 0.713 0.701 0.701 0.701
SD 3.31 | 3.73109Y | 3.25 6.11 6.00
DD 3.81 | 4.71750f | 3.64 11.9 13.1
Total | 7.82 | 9.157135 | 7.59 18.7 19.8
VS . . . .
® Interestingly this 1s particularly true
o [fb] Unitary once we include Z-immitiated
EL | SD | DD production.
No veto || 0.704 | 5.01 | 222
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‘Hybrid’ Calculation: DD

2 2
® [f satisty: QZQ > qut W7:2 > Wc2ut WS; B 3.5562//2
= 1Ge
cut

then include all diagrams:

P v/Z W Li%
K Wi W _
W
W:F + [ 3 N ]

v/Z w+

W+ 7
’Y/Z ”Y/

® [f only satisfied by one beam then include:

1z v/Z W
Y —
W¥
5
W¥
5

2 (inelastic)

® [f neither, then apply SF calculation.
23



Theoretical uncertainties

® Fxperimental uncertainty on SFs:

* Elastic form factors - Al collaboration, experimental uncertainty.

* 50% varation in £, /T .

* Variation of W? transition between CLAS/HERMES fits.
* Difference between CLAS and CB fits to resonant region.
* PDF uncertainty on NNLO QCD prediction for Q? > 1GeV? continuum.

+ Gives ~ 1-1.5% uncertainty. Largest for DD.

® Higher order corrections in parton-level result:

* Varying ir = 1/ Q7 by factor of 2 gives 2(3)% variation in SD(DD).
* Taking up = My, gives result consistent with this varation.
* Removing reweighting to have fixed & as per Madgraph - 1% level.

* To give better description of low region where PI dominates we
reweight by NNLO K-factor for F; . Removing this leads to ~ 2(5)%

change in SD, DD. Conservative as default choice is more accurate.

+ Gives ~ 2(6)% uncertegnty for SD (DD). None for EL.



Theoretical uncertainties

® Increasing values of Q2 ., W2 . to 10 GeV? results in ~ 1% reduction in cross

section. Even this i1s conservative.

® Survival factor:

* El: ~1% level, due to peripheral nature of interaction.

* SD, DD: calculation assume ‘two-channel’ model of proton, where
incoming beam superposition of two diffractive eigenstates. Freedom 1n

modelling how production process couples to these. Reasonable

variation gives ~ 10(60)% in SD (DD) case.

+ For DD in particular this is an estimate. Survival factor modelling
constrained by existing soft hadronic data, but certainly model

dependent. Constraining with similar (lepton, same sign W) data

useful.
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Omeas = 3.13 £ 0.31 (stat.) = 0.28 (syst.) tb

o [fb] (0/0tot) EL SD DD Total | /5
Wrw= | 0.565 (18.6%) | 1.87 (61.6%) | 0.599 (19.8%) | 3.03 | 4.3
[Tl 9.61 (24.0%) | 24.9 (62.5%) | 5.42 (13.5%) | 39.9 | 3.5

® Above result has significant bearing on common practice. That 1s, to measure: 3.5 = 0.5

O'EL —|—O'SD —|—O'DD

in dilepton sample with m;; > 2My and evaluate (EL better known theory):

O’EL 1 O'SD —|—O'DD

0
fW ~ O-EL,theor
® This is then used to give a predicted 1/ ™1}/ ~ cross section assuming f él = f ww
WWwW [l
o _ O-EL ,theor f

® But we do not expect this to be true! ATLAS measure: J él = 3.909 = 0.15

® Agrees well with our theory 0 . But follow above procedure get:
op ' =3.5x0.701fb = 2.45 b

1.e. rather low wrt data. Exactly as we would expect - effectively omits non-PI. Not

sufthicient for precision physics! Essential to follow approach as per this talk.
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