Modelling W boson pair production with rapidity gaps at the LHC

Lucian Harland-Lang, University of Oxford

DIS 2022, 4 May 2022

S. Bailey and LHL, arXiv:2201.08403 LHL, M. Tasevsky, V. A. Khoze, M.G. Ryskin Eur.Phys.J.C 80 (2020) 10, 925

VBS

- Vector Boson Scattering (VBS): broad class of process with sensitivity to the EW sector of the SM and BSM extensions of it. $WW, ZZ, WZ, W\gamma, Z\gamma...$
- Rich programme of theory + experimental studies at LHC.
- Focus on selecting such events via VBS cuts: require two well separated jets in addition to diboson final state (suppress s-channel $q\overline{q} \rightarrow VV$).
- However not the only way to look for this!

Image credit: Lucia Di Ciaccio, Simone Pagan Griso

VBS with rapidity gaps

• Alternative: select diboson final state + no addition track activity in central

^^^^ W

 $detector \Rightarrow VV + rapidity gaps.$

• s-channel: colour flow between
 proton ⇒ activity!

- Key example, opposite sign W^+W^- :
- Aim: by imposing veto can dominantly isolate the pure Photon-Initiated (PI) process*.
- Clean probe of γW (anomalous?) couplings.

• Can do even better: by **tagging** intact outgoing **protons** the PI mechanism is isolated even further! Dedicated detectors installed at ATLAS + CMS.

Recent data

- Evidence for such 'semi-exclusive' W⁺W⁻production in leptonic channel seen by ATLAS + CMS previously.
- Recently: first observation by **ATLAS**, at 13 TeV, via rapidity veto.

$$\sigma_{\text{meas}} = 3.13 \pm 0.31 \text{ (stat.)} \pm 0.28 \text{ (syst.) fb}$$

• No colour flow between beams \Rightarrow pass veto.

ATLAS, Phys. Lett. B 816, 136190 (2021)

• Question: how do we model this process?

Modelling WW production

• Any theoretical calculation should:

* Account for both elastic and inelastic production.

- * Fully account for all contributing diagrams, beyond PI production.
- ★ Systematically account for probability of no additional particle production, due to MPI.
- I will report here the first such full theoretical treatment, including a MC implementation.

 For more details see S. Bailey and LHL,

arXiv:2201.08403

Structure Function Calculation

• Basic idea: apply 'structure function' calculation.

- $rac{d^2\sigma}{dxdy} \propto L_{lphaeta} \; W^{lphaeta}$
- ullet Structure functions parameterise the $\gamma p o X$ vertex.
- Use same idea as for DIS to write:

$$W^{lphaeta}(p,q)=\Big(g^{lphaeta}-rac{q^{lpha}q^{eta}}{q^2}\Big)W_1(x,Q^2)+\Big(p^{lpha}+rac{1}{2x}q^{lpha}\Big)\Big(p^{eta}+rac{1}{2x}q^{eta}\Big)W_2(x,Q^2)$$

$$\sigma_{pp} = \frac{1}{2s} \int dx_1 dx_2 d^2 q_{1_{\perp}} d^2 q_{2_{\perp}} d\Gamma \alpha(Q_1^2) \alpha(Q_2^2) \frac{\rho_1^{\mu\mu'} \rho_2^{\nu\nu'} M_{\mu'\nu'}^* M_{\mu\nu}}{q_1^2 q_2^2} \delta^{(4)}(q_1 + q_2 - p_X) ,$$

• Cross section given in terms of photon density matrices ρ_i :

Both elastic and inelastic
 SFs accounted for:

★ Elastic: precisely measured proton EM form factor.

* Inelastic:
$$Q_{\mathrm{cut}}^2 = 1 \,\mathrm{GeV}^2$$
 $W_{\mathrm{cut}}^2 = 3.5 \,\mathrm{GeV}^2$

• Low (non-perturbative) Q^2 and/or W^2 region, take direct experimental determinations.

• High Q^2 region, simplest to calculate using (NNLO) pQCD + global PDFs.

LO parton-level:

Beyond PI production

- SF calculation only accounts for pure PI (+ Z-initiated) production.
 - Considering e.g. double dissociative (DD) case, this is not the only contribution:

- These non-VBS diagrams are suppressed by at least $\sim Q^2/M_{W,Z}^2$ and so on principle subleading. But:
 - ★ The contribution is not necessarily negligible to be determined.
 - * More importantly, the pure PI (+Z) contribution is **not individually gauge invariant**. For W^+W^- production power counting in $Q^2/M_{W,Z}^2$ can completely break down!

 σ [fb]

• Breakdown in power counting evident when working in e.g. unitary gauge. Compare 13 TeV DD cross section with on-shell approximation for $\gamma\gamma \to W^+W^-$

Unitary			On–shell		
EL	SD	DD	EL SD		DD
0.704	5.01	222	0.696	3.31	3.81

- Huge difference! Well known effect, due to longitudinal W polarizations when all diagrams not included.
 - Can rescue appropriate power counting by working in EW axial gauge: longitudinal W polarizations do not $\sim E_W/M_W$ (Backup).
- But appropriate solution has to be to include all relevant diagrams.

'Hybrid' Calculation

• Apply cutoff above which we include all relevant diagrams. For e.g. SD:

- Below cutoff (or even higher $W_{\text{cut}}^2, Q_{\text{cut}}^2$) contribution from non-PI diagrams tiny (< 0.1%) in any gauge \Rightarrow safely consider PI production as per SF approach.
- Above cutoff include full gauge invariant set of diagrams in parton model.
 - * As we will see, having control over this low Q^2 region crucial for evaluating no-MPI probability.
 - ***** This automatically regulates the $Q^2 \to 0$ region of collinear $q \to q \gamma$ emission. Only collinear singularity for such t-channel diagrams.
- A similar approach applied for the **DD** case (backup).
- ullet Theory uncertainty on the result at the 1% level (backup) prior to considering S^2 .

The Survival Factor

• Possibility of proton-proton MPI to consider.

 $p_{\perp} > 500 \,\mathrm{MeV}, \, |\eta| < 2.5$

• 'Survival factor' = probability of no additional inelastic hadron-hadron interactions (MPI), which will fill veto region*.

П

• Will not go into details here, but roughly speaking, survival factor expressed ~ as a cut on the hadron-hadron impact parameter:

$$S^2(b_\perp) \approx \theta(b_\perp - 2r_p)$$

with departure from sharp cutoff coming from details of inelastic pp scattering.

- Impact parameter b_{\perp}^2 is ~ Fourier conjugate to momentum transfer Q^2 and so survival factor depends on this.
 - * Elastic production: strongly peaked at low Q^2 (~ high b_{\perp}^2). Generally outside range of QCD pp interactions.
 - * Inelastic γp vertex: extends to larger Q^2 (~ lower b_\perp^2), i.e. lower S^2 . Find: $S_{\rm EL}^2 \sim 0.85 \pm 0.01 > S_{\rm SD}^2 \sim 0.6 \pm 0.05 > S_{\rm DD}^2 \sim 0.15 \pm 0.07$
- Thus MPI will tend to suppress DD production, as well as higher Q^2 region (i.e. non-PI). Though as we will see not entirely.
- Cannot simply run with MPI on general purpose MC misses crucial Q^2 & elastic vs. inelastic dependence. The application of the hybrid approach is key to this.

SuperChic 4.1 - MC Implementation

- Results of above calculation implemented in SuperChic 4.1 MC:
 - * Hybrid (SF + parton-level) calculation of production process.
 - ★ Fully differential treatment of no-MPI probability (survival factor).
- Unweighted events can then be passed to Pythia for showering/hadronization of proton dissociation products.

ATLAS data: comparison

• ATLAS 13 TeV data, with lepton cuts + veto on associated tracks in:

$$p_{\perp} > 500 \,\mathrm{MeV}, \, |\eta| < 2.5$$

i.e. aftersubtractingBGs includes:

• We therefore need to evaluate all three contributions in SC:

σ [fb] $(\sigma_i/\sigma_{\rm tot}), W^+W^-$	EL	SD	DD	Total
No veto, no S^2	0.701 (3.5%)	6.00 (30.3%)	13.1 (66.2%)	19.8
Veto, no S^2	0.701 (9.2%)	3.21 (42.3%)	3.68 (48.5%)	7.59
Veto, S^2	0.565 (18.6%)	1.87 (61.6%)	0.599 (19.8%)	3.03

• To compare with data: $\sigma_{\text{meas}} = 3.13 \pm 0.31 \text{ (stat.)} \pm 0.28 \text{ (syst.) fb}$

⇒ Very good agreement! In more detail....

σ [fb] $(\sigma_i/\sigma_{\rm tot}), W^+W^-$	EL	SD	DD	Total
No veto, no S^2	0.701~(3.5%)	6.00 (30.3%)	13.1 (66.2%)	19.8
Veto, no S^2	0.701 (9.2%)	3.21 (42.3%)	3.68 (48.5%)	7.59
Veto, S^2	0.565 (18.6%)	1.87 (61.6%)	0.599 (19.8%)	3.03

- ullet Break down to show impact of veto and survival factor for demonstration: 3.0 ± 0.5
 - **★ Veto** (imposed at particle level on SC + Pythia) reduces cross section by a factor of over ~ 2.
 - ★ Survival factor reduces cross section by further factor of over ~ 2.
 - ★ In both cases impact on DD largest, EL smallest.
- Proper account of both effects clearly key to matching data.
- What about impact of **non-PI**?

- Impact of **non-PI**: can only sensibly address by working in **axial gauge**, where power counting present.
- Alternative: compare with lepton pair production in similar kinematic region.
- Here impact of non-PI is found to be 1% level at most, and no issue with gauge invariance.

$\sigma \text{ [fb] } (\sigma_i/\sigma_{\mathrm{tot}})$	EL	SD	DD	Total	f_{γ}^{X}
W^+W^-	0.565 (18.6%)	1.87 (61.6%)	0.599 (19.8%)	3.03	4.3
l^+l^-	9.61 (24.0%)	24.9 (62.5%)	5.42 (13.5%)	39.9	3.5

i.e. relative contribution from SD + DD is ~ 20% larger wrt pure EL in W^+W^- case. Dominantly due to **non-PI**.

$$f_{\gamma}^{X} pprox rac{\sigma^{\mathrm{EL}} + \sigma^{\mathrm{SD}} + \sigma^{\mathrm{DD}}}{\sigma^{\mathrm{EL}}}$$

• Also leads to rather different breakdown between various channels. Crucial to account for - common previously to assume these are equal in extracting an 'exclusive' W^+W^- signal.

Final Remarks

- Alternative procedure: work in collinear factorization. However the DD component then requires a NNLO EW calculation + μ_F dependence that is absent in our approach. Also not currently possible to evaluate S^2 .
- Theory uncertainty dominantly due to survival factor, but largely correlated with l^+l^- : possibility to calibrate. Another possibility: select same sign $W^\pm W^\pm$ with gap (only DD present).
- A way to further test this approach + provide more information is clearly to tag the protons (ideally both). Then EL more effectively isolated.
- In the meantime a full account of all effects (non-PI, survival factor...) key for precision studies, EFT analyses etc.

Summary

- * Have described first complete approach to modelling W^+W^- production with rapidity gaps at the LHC. Process with promising sensitivity to the EW sector of the SM and beyond.
- ★ Delicate interplay of photon-initiated + non-photon-initiated diagrams + MPI effects. Need to account for these if we are to do precision physics, at least without tagged protons.
- ★ Much work to do, and interesting studies to perform!

Thank you for listening!

Backup

PI + ISR Showering

• SF calculation give precision prediction for photon x, Q^2 and we would like showering/hadronisation of dissociation system to respect this.

- No clear off-the-shelf way to do this, so take simplified approach:
 - ***** For purposes of LHE record, for inelastic emission take LO $q \rightarrow q \gamma$ vertex
 - ★ Generate outgoing quark according to momentum conservation, preserving photon 4-momentum.

• In addition, must turn off global recoil in Pythia to get realistic result (no colour connection between beams).

Axial gauge

• Gauge fixing term in SM Lagrangian has the form:

$$\mathcal{L}_{gf} = -\frac{1}{2} \lambda n^{\mu} A^{a}_{\mu} A^{b}_{\nu} n^{\nu} - \frac{1}{2} \lambda (n \cdot B)^{2} ,$$

where n^{μ} is arbitrary 4-vector.

• This leads to W, Z longitudinal polarizations that no longer grow with energy. For $n^2 = 0$ have:

$$\epsilon_L^{\mu}(k) = i \frac{M_W}{k \cdot n} n^{\mu}$$

• In such a case power counting reintroduced:

Axial gauge

• Cross sections well behaved (even without veto), and rather close to full result.

σ [fb]	On–shell	Collinear	Axial	Axial (inc. Z)	Full
EL	0.696	0.713	0.701	0.701	0.701
SD	3.31	$3.73^{+0.40}_{-0.41}$	3.25	6.11	6.00
DD	3.81	$4.71^{+1.07}_{-0.95}$	3.64	11.9	13.1
Total	7.82	$9.15^{+1.47}_{-1.36}$	7.59	18.7	19.8

VS

σ [fb]	Unitary			
	EL	SD	DD	
No veto	0.704	5.01	222	

• Interestingly this is particularly true once we include Z-initiated production.

'Hybrid' Calculation: DD

• If satisfy:

$$Q_i^2 > Q_{\text{cut}}^2$$

$$Q_i^2 > Q_{\text{cut}}^2 \qquad W_i^2 > W_{\text{cut}}^2$$

$$W_{\text{cut}}^2 = 3.5 \,\text{GeV}^2$$
$$Q_{\text{cut}}^2 = 1 \,\text{GeV}^2$$

then include all diagrams:

• If only satisfied by one beam then include:

• If neither, then apply SF calculation.

Theoretical uncertainties

- Experimental uncertainty on SFs:
 - ★ Elastic form factors A1 collaboration, experimental uncertainty.
 - ★ 50% variation in $R_{L/T}$.
 - \star Variation of W^2 transition between CLAS/HERMES fits.
 - ★ Difference between CLAS and CB fits to resonant region.
 - ★ PDF uncertainty on NNLO QCD prediction for $Q^2 > 1 \text{GeV}^2$ continuum.
 - ◆ Gives ~ 1-1.5% uncertainty. Largest for DD.
- Higher order corrections in parton-level result:
 - * Varying $\mu_F = \sqrt{Q_i^2}$ by factor of 2 gives 2(3)% variation in SD(DD).
 - * Taking $\mu_F = M_W$ gives result consistent with this variation.
 - \star Removing reweighting to have fixed α as per Madgraph 1% level.
 - ★ To give better description of low region where PI dominates we reweight by NNLO K-factor for F_2 . Removing this leads to ~ 2(5)% change in SD, DD. Conservative as default choice is more accurate.
 - Gives ~ 2(5)% uncertainty for SD (DD). None for EL.

Theoretical uncertainties

• Increasing values of $Q_{\rm cut}^2$, $W_{\rm cut}^2$ to $10\,{\rm GeV}^2$ results in ~ 1% reduction in cross section. Even this is conservative.

• Survival factor:

- ★ EL: ~1% level, due to peripheral nature of interaction.
- ★ SD, DD: calculation assume 'two-channel' model of proton, where incoming beam superposition of two diffractive eigenstates. Freedom in modelling how production process couples to these. Reasonable variation gives ~ 10(50)% in SD (DD) case.
- ◆ For DD in particular this is an estimate. Survival factor modelling constrained by existing soft hadronic data, but certainly model dependent. Constraining with similar (lepton, same sign W) data useful.

$\sigma \text{ [fb] } (\sigma_i/\sigma_{\mathrm{tot}})$	EL	SD	DD	Total	f_{γ}^{X}
W^+W^-	0.565 (18.6%)	1.87 (61.6%)	0.599 (19.8%)	3.03	4.3
l^+l^-	9.61 (24.0%)	24.9 (62.5%)	5.42 (13.5%)	39.9	3.5

ullet Above result has significant bearing on **common practice**. That is, to measure: 3.5 ± 0.5

$$\sigma^{\mathrm{EL}} + \sigma^{\mathrm{SD}} + \sigma^{\mathrm{DD}}$$

in dilepton sample with $m_{ll} > 2M_W$ and evaluate (EL better known theory):

$$f_{\gamma}^{ll} pprox rac{\sigma^{\mathrm{EL}} + \sigma^{\mathrm{SD}} + \sigma^{\mathrm{DD}}}{\sigma^{\mathrm{EL,theor}}}$$

• This is then used to give a predicted W^+W^- cross section assuming $f_{\gamma}^{ll}=f_{\gamma}^{WW}$

$$\sigma^{WW} = \sigma^{WW}_{\text{EL,theor}} \cdot f^{ll}_{\gamma}$$

- ullet But we do not expect this to be true! ATLAS measure: $f_{\gamma}^{ll}=3.59\pm0.15$
- Agrees well with our theory 🗸 . But follow above procedure get:

$$\sigma_{f_{\gamma}}^{WW} = 3.5 \times 0.701 \,\text{fb} = 2.45 \,\text{fb}$$

i.e. rather low wrt data. Exactly as we would expect - effectively omits non-PI. Not sufficient for precision physics! Essential to follow approach as per this talk.