Unbinned measurements in global SMEFT fits from machine learning

Work done in collaboration with R. Gomez Ambrosio, M. Madigan, J. Rojo, V. Sanz

Jaco ter Hoeve

The Standard Model Effective Field Theory

- Systematic parameterisation of the theory space close to the Standard Model
- Study the fingerprints of NP at low energies through higher dimensional operators
- Assumes the SM field content and gauge symmetries

$$\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{\text{SM}} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{i}^{N_{d8}} \frac{b}{\Lambda}$$

The Standard Model Effective Field Theory

- Systematic parameterisation of the theory space close to the Standard Model
- Study the **fingerprints** of NP at low energies through higher dimensional operators
- Assumes the SM field content and gauge symmetries

$$\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{\text{SM}} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{i}^{N_{d8}} \frac{b}{\Lambda}$$

The Standard Model Effective Field Theory

- close to the Standard Model
- higher dimensional operators
- Assumes the SM field content and gauge symmetries

- A global SMEFT analysis needs to explore a huge parameter space (2499 at dim 6)
- Studies the intricate interplay between the top, Higgs and diboson sectors
- Requires state-of-the-art theory calculations in both the SM (NLO QCD + NNLO K-factors) and EFT

- A global SMEFT analysis needs to explore a huge parameter space (2499 at dim 6)
- Studies the intricate interplay between the top, Higgs and diboson sectors
- Requires state-of-the-art theory calculations in both the SM (NLO QCD + NNLO K-factors) and EFT

- A global SMEFT analysis needs to explore a huge parameter space (2499 at dim 6)
- Studies the intricate interplay between the top, Higgs and diboson sectors
- Requires state-of-the-art theory calculations in both the SM (NLO QCD + NNLO K-factors) and EFT
- Based on unfolded cross sections not tailored for EFT studies!

Can we extend global SMEFT fits with ML based observables?

Which kind of measurement is **most sensitive** to SMEFT operators?

Difficult question to answer in general, since SMEFT measurements can be lacksquare

- Difficult question to answer in general, since SMEFT measurements can be
 - Inclusive or (1, 2, 3) differential (in which variables?) •

Which kind of measurement is **most sensitive** to SMEFT operators?

Which kind of measurement is **most sensitive** to SMEFT operators?

- Difficult question to answer in general, since SMEFT measurements can be
 - Inclusive or (1, 2, 3) differential (in which variables?) $75 \text{ GeV} < p_{T}^{Z,t} < 150 \text{ GeV}$ $150 \text{ GeV} < p_{T}^{Z,t} < 250 \text{ GeV}$ Binned (choice of binning?) or unbinned $ZH, Z \rightarrow ll/vv, H \rightarrow bb$ $250 \text{ GeV} < p_{T}^{Z,t} < 400 \text{ GeV}$ $p_{\rm T}^{\rm Z,t} > 400 {\rm ~GeV}$
 - lacksquarelacksquare

ATLAS-CONF-2021-051

- Difficult question to answer in general, since SMEFT measurements can be
 - Inclusive or (1, 2, 3) differential (in which variables?) •
 - Binned (choice of binning?) or unbinned •

Which kind of measurement is **most sensitive** to SMEFT operators?

- Difficult question to answer in general, since SMEFT measurements can be
 - Inclusive or (1, 2, 3) differential (in which variables?) lacksquare
 - Binned (choice of binning?) or unbinned \bullet

Goal: deploy unbinned measurements to determine the optimal sensitivity using ML techniques

Which kind of measurement is **most sensitive** to SMEFT operators?

Useful diagnosis tool!

Related work

- The likelihood ratio as central object
- Parameterise the likelihood ratio with **Neural Networks**
- Current studies are limited to only a small number of EFT coefficients \bullet

J. Brehmer et al. [2010.06439]

Carry out EFT analysis with **different** variants of the **same** measurement

$$\log \mathscr{L}_{\text{binned}}(c) = -\frac{1}{2} \sum_{i=1}^{n_{\text{bins}}} \frac{(n_i - \nu_i)^2}{\nu_i}$$

Binned Gaussian Likelihood

 $\log \mathscr{L}_{\text{unbinned}}(\nu, c) = -\nu(c) + \sum_{i=1}^{N} \log \omega_{i}$

$$\log \mathscr{L}_{\text{binned}}(c) = \sum_{i=1}^{n_{\text{bins}}} n_i \log \nu_i(c) - \nu_i(c)$$

Binned Poissonian Likelihood

Unbinned extended likelihood

$$u(c)g(x_i,c) \qquad g(x_i,c) \equiv \frac{1}{\sigma(X,c)} \frac{d\sigma(x,c)}{dx}$$

Carry out EFT analysis with **different** variants of the **same** measurement

$$\log \mathscr{L}_{\text{binned}}(c) = -\frac{1}{2} \sum_{i=1}^{n_{\text{bins}}} \frac{(n_i - \nu_i)^2}{\nu_i}$$

Binned Gaussian Likelihood

Unbinned extended likelihood

$$\log \mathscr{L}_{\text{unbinned}}(\nu, c) = -\nu(c) + \sum_{i=1}^{N} \log \nu(c)g(x_i, c) \qquad g(x_i, c) \equiv \frac{1}{\sigma(X, c)} \frac{d\sigma(x, c)}{dx}$$

We consider processes that are dominated by statistical uncertainties, adding systematics is WIP

$$\log \mathscr{L}_{\text{binned}}(c) = \sum_{i=1}^{n_{\text{bins}}} n_i \log \nu_i(c) - \nu_i(c)$$

Binned Poissonian Likelihood

Dependence of cross-section* on all (independent) kinematic variables and all EFT coefficients

$$g(x_i, c) \equiv \frac{1}{\sigma(X, c)} \frac{d\sigma(x, c)}{dx}$$

is parameterised by a feed-forward NN trained to Monte-Carlo simulations, **benchmarked** with analytical calculations

*Actually the likelihood ratio $r(x, c) = d\sigma(x, c)/d\sigma(x, 0)$

Dependence of cross-section* on all (independent) kinematic variables and all EFT coefficients

$$g(x_i, c) \equiv \frac{1}{\sigma(X, c)} \frac{d\sigma(x, c)}{dx}$$

is parameterised by a feed-forward NN trained to Monte-Carlo simulations, **benchmarked** with analytical calculations

*Actually the likelihood ratio $r(x, c) = d\sigma(x, c)/d\sigma(x, 0)$

Dependence of cross-section* on all (independent) kinematic variables and all EFT coefficients

$$g(x_i, c) \equiv \frac{1}{\sigma(X, c)} \frac{d\sigma(x, c)}{dx}$$

is parameterised by a feed-forward NN trained to Monte-Carlo simulations, benchmarked with analytical calculations

*Actually the likelihood ratio $r(x, c) = d\sigma(x, c)/d\sigma(x, 0)$

Challenge: correctly describing tails of distributions (low stats)

lacksquare**optimisation problem** on two balanced training sets S_0 and S_1

$$L[f(x)] = -\sum_{e \in S_0} w_e \log(1 - f(x_e)) - \sum_{e \in S_1} w_e \log f(x_e)$$

EFT events

$$x_e = \{p_T, Y, m_{ZH}, \dots\}$$

 \bullet **optimisation problem** on two balanced training sets S_0 and S_1

$$L[f(x)] = -\int dx \frac{d\sigma_0}{dx} \log(1-f) - \int dx \frac{d\sigma_0}{dx} \log(1-f) - \int dx \frac{d\sigma_0}{dx} \log(1-f) dx \frac{d\sigma_0}{dx}$$

 \bullet **optimisation problem** on two balanced training sets S_0 and S_1

$$L[f(x)] = -\int dx \frac{d\sigma_0}{dx} \log(1-f) - \int dx \frac{d\sigma_1}{dx} \log f$$

$$\int \frac{\delta L}{\delta f} = 0 \implies \hat{f} = \frac{1}{1 + d\sigma_0/d\sigma_1}$$
(EFT events SM events

 \bullet **optimisation problem** on two balanced training sets S_0 and S_1

$$L[f(x)] = -\int dx \frac{d\sigma_0}{dx} \log(1-f) - \int dx \frac{d\sigma_1}{dx} \log f$$

$$\int \frac{\delta L}{\delta f} = 0 \implies \hat{f} = \frac{1}{1 + d\sigma_0/d\sigma_1}$$

$$\int \frac{\delta L}{\delta f} = 0 \implies \hat{f} = \frac{1}{1 + d\sigma_0/d\sigma_1}$$

A perfectly trained binary classifier is **one to one** with the likelihood ratio

 \bullet **optimisation problem** on two balanced training sets S_0 and S_1

$$L[f(x)] = -\int dx \frac{d\sigma_0}{dx} \log(1-f) - \int dx \frac{d\sigma_1}{dx} \log f$$

$$\int \frac{\delta L}{\delta f} = 0 \implies \hat{f} = \frac{1}{1 + d\sigma_0/d\sigma_1}$$
(EFT events SM events

- A perfectly trained binary classifier is **one to one** with the likelihood ratio
- Equivalent formulations exist, e.g. in terms of a quadratic loss

Finding the likelihood ratio between hypotheses H_0 and H_1 can be formulated in terms of an

S. Chen, A. Glioti, G. Panico, A. Wulzer [2007.10356]

 \bullet

•

Exploit the polynomial structure of the EFT coefficients to separate the learning problem

Cross section **positivity** can be enforced through either Lagrange multipliers or a final ReLU

Scaling behaviour

Our method scales efficiently with the number of EFT coefficients and can be parallelised

$$\frac{d\sigma_0}{d\sigma_1} = 1 + c \cdot n_{\alpha}^{(1)}$$

$$\vdots$$
Trained in parallel
$$\vdots$$

$$\vdots$$

$$\frac{d\sigma_0}{d\sigma_1} = 1 + c \cdot n_{\alpha}^{(n)}$$

1. Linear terms

Scaling behaviour

Our method scales efficiently with the number of EFT coefficients and can be parallelised

1. Linear terms

$$-c \cdot n_{\alpha}^{(1)} + c^2 n_{\beta}^{(1)}$$

Trained in parallel

 $\frac{d\sigma_0}{d\sigma_1} = 1 + c \cdot n_\alpha^{(n)} + c^2 n_\beta^{(n)}$

2. Quadratic terms

Scaling behaviour

Our method scales efficiently with the number of EFT coefficients and can be parallelised

1. Linear terms

$$-c \cdot n_{\alpha}^{(1)} + c^{2} n_{\beta}^{(1)}$$

$$\vdots$$

$$\vdots$$

$$ined in parallel$$

$$\vdots$$

$$+ c \cdot n_{\alpha}^{(n)} + c^{2} n_{\beta}^{(n)}$$

$$\frac{d\sigma_{0}}{d\sigma_{1}} = \dots + c_{1} c_{2} n_{\gamma}^{(n_{\text{pairs}})}$$

$$\frac{d\sigma_{0}}{d\sigma_{1}} = \dots + c_{1} c_{2} n_{\gamma}^{(n_{\text{pairs}})}$$

2. Quadratic terms

3. Cross terms

We train a collection of 50 NN instances on independent MC datasets to estimate the NN uncertainty

- LO QCD MC dataset (100K)
- PyTorch Implementation
- Validation loss is monitored to avoid overfitting
- Training takes ~30 min per core (1 replica/core)
- 5 hidden layers (30 units)
- ReLU activation functions

We train a collection of 50 NN instances on independent MC datasets to estimate the NN uncertainty

- LO QCD MC dataset (100K)
- PyTorch Implementation
- Validation loss is monitored to avoid overfitting
- Training takes ~30 min per core (1 replica/core)
- 5 hidden layers (30 units)
- ReLU activation functions

We train a collection of 50 NN instances on independent MC datasets to estimate the NN uncertainty

- LO QCD MC dataset (100K)
- PyTorch Implementation
- Validation loss is monitored to avoid overfitting
- Training takes ~30 min per core (1 replica/core)
- 5 hidden layers (30 units)
- ReLU activation functions

We train a collection of 50 NN instances on independent MC datasets to estimate the NN uncertainty

- LO QCD MC dataset (100K)
- PyTorch Implementation
- Validation loss is monitored to avoid overfitting
- Training takes ~30 min per core (1 replica/core)
- 5 hidden layers (30 units)
- ReLU activation functions

- Use **Nested Sampling** to draw posterior • samples F. Feroz et al. [1306.2144]
- A ground truth analysis with a combination of either m_{ZH} , Y or p_T^Z performs best with all features included

- Use **Nested Sampling** to draw posterior • samples F. Feroz et al. [1306.2144]
- A ground truth analysis with a combination of either m_{ZH} , Y or p_T^Z performs best with all features included

- Use **Nested Sampling** to draw posterior • samples F. Feroz et al. [1306.2144]
- A ground truth analysis with a combination of either m_{ZH} , Y or p_T^Z performs best with all features included

- Use **Nested Sampling** to draw posterior • samples F. Feroz et al. [1306.2144]
- A ground truth analysis with a combination of either m_{ZH} , Y or p_T^Z performs best with all features included
- Binned analyses eventually saturate to unbinned case

- Use **Nested Sampling** to draw posterior • samples F. Feroz et al. [1306.2144]
- A ground truth analysis with a combination of either m_{ZH} , Y or p_T^Z performs best with all features included
- Binned analyses eventually saturate to unbinned case

- Use Nested Sampling to draw posterior • samples F. Feroz et al. [1306.2144]
- A ground truth analysis with a combination of either m_{ZH} , Y or p_T^Z performs best with all features included
- Binned analyses eventually saturate to unbinned case

- Use **Nested Sampling** to draw posterior • samples F. Feroz et al. [1306.2144]
- A ground truth analysis with a combination of either m_{ZH} , Y or p_T^Z performs best with all features included
- Binned analyses eventually saturate to unbinned case
- Binning in p_T^Z is **suboptimal**, i.e. STXS

- Use **Nested Sampling** to draw posterior samples F. Feroz et al. [1306.2144]
- A ground truth analysis with a combination of either m_{ZH} , Y or p_T^Z performs best with all features included
- Binned analyses eventually saturate to unbinned case
- Binning in p_T^Z is **suboptimal**, i.e. STXS

- Use **Nested Sampling** to draw posterior • samples F. Feroz et al. [1306.2144]
- A ground truth analysis with a combination of either m_{ZH} , Y or p_T^Z performs best with all features included
- Binned analyses eventually saturate to unbinned case
- Binning in p_T^Z is **suboptimal**, i.e. STXS

- Use **Nested Sampling** to draw posterior samples F. Feroz et al. [1306.2144]
- A ground truth analysis with a combination of either m_{ZH} , Y or p_T^Z performs best with all features included
- Binned analyses eventually saturate to unbinned case
- Binning in p_T^Z is **suboptimal**, i.e. STXS
- NN reproduces the truth (within uncertainties?)

Conclusion and Outlook

- The SMEFT allows for a model independent framework to search for New Physics, taking correlations from different sectors into account
- Traditional SMEFT analyses can and should be complemented with unbinned measurements to optimise the constraining power on the Wilson coefficients
- Likelihood ratio parameterisations with NN are a promising way forward, and should be implemented in true global EFT fits

Thank you! Questions?

Backup

