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The Standard Model Effective Field Theory
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• Systematic parameterisation of the theory space 
close to the Standard Model


• Study the fingerprints of NP at low energies through 
higher dimensional operators


• Assumes the SM field content and gauge 
symmetries
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• Systematic parameterisation of the theory space 
close to the Standard Model


• Study the fingerprints of NP at low energies through 
higher dimensional operators


• Assumes the SM field content and gauge 
symmetries
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Interference Quadratic corrections
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So what then are global SMEFT fits?

• A global SMEFT analysis needs to explore a huge parameter space (2499 at dim 6)


• Studies the intricate interplay between the top,  Higgs and diboson sectors


• Requires state-of-the-art theory calculations in both the SM (NLO QCD + NNLO K-factors) 
and EFT 
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J.J. Ethier et al.

[2105.00006]
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So what then are global SMEFT fits?

• A global SMEFT analysis needs to explore a huge parameter space (2499 at dim 6)


• Studies the intricate interplay between the top,  Higgs and diboson sectors


• Requires state-of-the-art theory calculations in both the SM (NLO QCD + NNLO K-factors) 
and EFT 


• Based on unfolded cross sections not tailored for EFT studies!
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Can we extend global SMEFT fits with ML based observables?



Jaco ter Hoeve - DIS2022

Statistically optimal observables from ML

• Difficult question to answer in general, since SMEFT measurements can be
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Which kind of measurement is most sensitive to SMEFT operators?
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Which kind of measurement is most sensitive to SMEFT operators?

ATLAS-CONF-2021-051
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Statistically optimal observables from ML

• Difficult question to answer in general, since SMEFT measurements can be

• Inclusive or (1, 2, 3) - differential (in which variables?)

• Binned (choice of binning?) or unbinned

6

Which kind of measurement is most sensitive to SMEFT operators?

Goal: deploy unbinned measurements to determine the optimal 
sensitivity using ML techniques

Useful diagnosis tool!
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Related work
• The likelihood ratio as central object


• Parameterise the likelihood ratio with Neural Networks 

• Current studies are limited to only a small number of EFT coefficients

S. Chen, A. Glioti, G. Panico, A. Wulzer

[2007.10356]

J. Brehmer et al. [2010.06439]
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Statistically optimal observables from ML
Carry out EFT analysis with different variants of the same 

measurement

log ℒbinned(c) = −
1
2

nbins

∑
i=1

(ni − νi)2

νi
log ℒbinned(c) =

nbins

∑
i=1

ni log νi(c) − νi(c)

Binned Gaussian Likelihood Binned Poissonian Likelihood

log ℒunbinned(ν, c) = − ν(c) +
N

∑
i=1

log ν(c)g(xi, c) g(xi, c) ≡
1

σ(X, c)
dσ(x, c)

dx

Unbinned extended likelihood
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Statistically optimal observables from ML
Carry out EFT analysis with different variants of the same 

measurement

log ℒbinned(c) = −
1
2

nbins

∑
i=1

(ni − νi)2

νi
log ℒbinned(c) =

nbins

∑
i=1

ni log νi(c) − νi(c)

Binned Gaussian Likelihood Binned Poissonian Likelihood

log ℒunbinned(ν, c) = − ν(c) +
N

∑
i=1

log ν(c)g(xi, c) g(xi, c) ≡
1

σ(X, c)
dσ(x, c)

dx

Unbinned extended likelihood

We consider processes that are dominated by statistical uncertainties, adding systematics is WIP
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Dependence of cross-section* on all 
(independent) kinematic variables and all EFT 
coefficients  
 
 
 
 
 
is parameterised by a feed-forward NN trained 
to Monte-Carlo simulations, benchmarked 
with analytical calculations

9

Statistically optimal observables from ML

g(xi, c) ≡
1

σ(X, c)
dσ(x, c)

dx

*Actually the likelihood ratio r(x, c) = dσ(x, c)/dσ(x,0)

pp → ZH → l+l−bb̄
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Dependence of cross-section* on all 
(independent) kinematic variables and all EFT 
coefficients  
 
 
 
 
 
is parameterised by a feed-forward NN trained 
to Monte-Carlo simulations, benchmarked 
with analytical calculations

9

Statistically optimal observables from ML

g(xi, c) ≡
1

σ(X, c)
dσ(x, c)

dx

*Actually the likelihood ratio r(x, c) = dσ(x, c)/dσ(x,0) Challenge: correctly describing tails of distributions (low stats)

pp → ZH → l+l−bb̄
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• Finding the likelihood ratio between hypotheses  and  can be formulated in terms of an 
optimisation problem on two balanced training sets  and 

H0 H1
S0 S1

Training formalism

10

L[ f(x)] = − ∑
e∈S0

we log(1 − f(xe)) − ∑
e∈S1

we log f(xe)

SM eventsEFT events

xe = {pT, Y, mZH, …}
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• Finding the likelihood ratio between hypotheses  and  can be formulated in terms of an 
optimisation problem on two balanced training sets  and 

H0 H1
S0 S1

• A perfectly trained binary classifier is one to one with the likelihood ratio

• Equivalent formulations exist, e.g. in terms of a quadratic loss 

Training formalism

10

L[ f(x)] = − ∫ dx
dσ0

dx
log(1 − f ) − ∫ dx

dσ1

dx
log f

SM eventsEFT events

δL
δf

= 0 ⟹ ̂f =
1

1 + dσ0/dσ1

S. Chen, A. Glioti, G. Panico, A. Wulzer

[2007.10356]
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• Exploit the polynomial structure of the EFT coefficients to separate the learning problem

Training formalism

11

dσ0

dσ1
= 1 + c ⋅ nα

1. Linear term

dσ0

dσ1
= 1 + c ⋅ nα + c2nβ

2. Quadratic term

dσ0

dσ1
= … + c1c2nγ

3. Cross term

• Cross section positivity can be enforced through either Lagrange multipliers or a final ReLU
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Our method scales efficiently with the number of EFT coefficients and can be parallelised

Scaling behaviour

12

dσ0

dσ1
= 1 + c ⋅ n(1)

α

1. Linear terms

dσ0

dσ1
= 1 + c ⋅ n(n)

α

Trained in parallel
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2. Quadratic terms
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Our method scales efficiently with the number of EFT coefficients and can be parallelised

Scaling behaviour
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dσ0

dσ1
= 1 + c ⋅ n(1)

α + c2n(1)
β

2. Quadratic terms

dσ0

dσ1
= 1 + c ⋅ n(n)

α + c2n(n)
β

Trained in parallel

dσ0

dσ1
= … + c1c2n(1)

γ

3. Cross terms

dσ0

dσ1
= … + c1c2n

(npairs)
γ

Trained in parallel

dσ0

dσ1
= 1 + c ⋅ n(1)

α

1. Linear terms

dσ0

dσ1
= 1 + c ⋅ n(n)

α
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The Monte Carlo replica method

13

We train a collection of 50 NN instances on independent MC datasets to estimate the NN uncertainty   

• LO QCD MC dataset (100K)


• PyTorch Implementation


• Validation loss is monitored 
to avoid overfitting


• Training takes ~30 min per 
core (1 replica/core)


• 5 hidden layers (30 units)


• ReLU activation functions


Training settings
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Results
• Use Nested Sampling to draw posterior 

samples


• A ground truth analysis with a 
combination of either  ,  or  
performs best with all features included

mZH Y pZ
T

16
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F. Feroz et al. [1306.2144]
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samples
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• Use Nested Sampling to draw posterior 
samples


• A ground truth analysis with a 
combination of either  ,  or  
performs best with all features included


• Binned analyses eventually saturate to 
unbinned case

mZH Y pZ
T

Results

F. Feroz et al. [1306.2144]
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• Use Nested Sampling to draw posterior 
samples


• A ground truth analysis with a 
combination of either  ,  or  
performs best with all features included


• Binned analyses eventually saturate to 
unbinned case 


• Binning in  is suboptimal, i.e. STXS


• NN reproduces the truth (within 
uncertainties?)

mZH Y pZ
T

pZ
T

Results

F. Feroz et al. [1306.2144]
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Conclusion and Outlook

• The SMEFT allows for a model independent 
framework to search for New Physics, taking 
correlations from different sectors into account


• Traditional SMEFT analyses can and should be 
complemented with unbinned measurements to 
optimise the constraining power on the Wilson 
coefficients


• Likelihood ratio parameterisations with NN are a 
promising way forward, and should be implemented in 
true global EFT fits

20
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Thank you! 
Questions?

21
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Backup
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