

First measurement of the $\gamma\gamma \to \tau\tau$ production in PbPb collisions with the CMS experiment

GK Krintiras (cern.ch/gkrintir) for the CMS Collaboration

Science

Overview of the $\gamma\gamma \rightarrow \tau\tau$ process

- **Promising candidate** for the $a_{\tau} = (g_{\tau}-2)/2$ determination
 - "using a large heavy ion collider" for g_τ-2 suggested since <u>90s</u>
 - cross section in UPC receives a Z^4 enhancement relative to pp
- LHC could **improve** the sensitivity on a_{τ} relative to LEP

probe the anomalous τ lepton electric moment too like <u>BELLE</u>

au lepton photoproduction in ultraperipheral collisions (UPC)

Phys. Lett .B **809** (2020) 135682 (2002.05503) Phys. Rev. D **102** (2020) 113008 (1908.05180)

τ 's are multifaceted

- ττ signal regions can be then defined based on the lepton and/or hadron multiplicity
 - dilepton: the lowest reco efficiency
 - $1\ell + 1$ track: main bkg due to $\mu\mu$, ee
 - 1ℓ +3 tracks: clean with high enough yield

How to observe the $\gamma\gamma \rightarrow \tau\tau$ process at LHC

- The total $\gamma\gamma \to \tau\tau$ cross section is of O(1 mb) \to O(1 M) with 2 /nb
 - we expected <100 1µ+3 tracks events within acceptance
- τ lepton reco challenging at low-p_τ (<20 GeV)
 - till recently **no** measurement in nuclear collisions
 - indirect presence via Z/γ* in top quark events

How to observe the $\gamma\gamma \rightarrow \tau\tau$ process at LHC

- The total $\gamma\gamma \to \tau\tau$ cross section is of O(1 mb) \to O(1 M) with 2/nb $^{\mathrm{Pb}}$
 - we expected <100 1µ+3 tracks events within acceptance
- τ lepton reco challenging at low-p_τ (<20 GeV)
 - till recently **no** measurement in nuclear collisions
 - indirect presence via Z/γ* in top quark events
- Take advantage of UPC events and τ lepton unique decay signatures
 - low track multiplicity (Nch), UPC triggers, and "exclusivity" requirements
 - single lepton triggers
 - no activity in forward hadron (HF) calorimeters above noise threshold
- Aim to establish $\gamma\gamma \to \tau\tau$ at LHC as the first crucial step during a dedicated physics program
 - using PbPb collisions in 2015 (~0.5 /nb)
 - followed by the inclusion of 2018 (~1.5 /nb)
 - Runs 3+4 projection in the realm of the joint ATLAS+CMS <u>Snowmass22</u> effort

Our event **selection** and MC **simulation**

- **Trigger:** 1 muon & + >=1 track in the pixel detector + no HF activity on either side
- Optimized offline event selection (cf Table)
- Our **signal region** is 1 muon & *Nch*=3
 - other Nch and HF activity regions used in bkg estimation
- MC simulation for **signal and validation** (main bkg, efficiency)

Object	Criteria
$\overset{O}{\mu}$	$p_T > 3.5$ GeV for $ \eta < 1.2$ $p_T > 2.5$ GeV for $1.2 < \eta < 2.4$
π^\pm	$p_T>0.5$ GeV for leading π^\pm $p_T>0.3$ GeV for (sub-)sub-leading π^\pm $ \eta <2.5$
$ au_{3prong}$	$p_T^{vis} > 0.2~{ m GeV}$ $0.2~{ m GeV} < m_{\pi\pi\pi} < 1.5~{ m GeV}$

Data-to-exp comparison: control plots in the signal region

- Very good agreement between data & expectations
 - signal MC is scaled to the integrated luminosity
 - we're in an almost bkg-free phase space region(!)

Signal yield estimation

- Binned likelihood fit to a discriminating variable
- Angular separation ($\Delta \phi$) between leptonic and hadronic candidates
 - MC signal (peaky) and bkg template (flat) from data
- Number of observed post-fit signal events: 77 ± 12
- Observed significance is more than 5σ
 - taking into account systematic uncertainties
 - affecting the rate with log-normal priors
 - affecting the shape with Gaussian prior

Cross section measurement

- Extra ingredients needed
 - L = $404 / \mu b$
 - $BR\mu$ -3prong = 5.06%
 - efficiency (ϵ) from MC = 78.5%

$$\sigma_{fiducial} = \frac{N_{signal}}{L \times BR \times \epsilon}$$

 $\sigma(\gamma\gamma \rightarrow \tau^{+}\tau^{-})$ [µb]

10

Overview of uncertainties

- Statistically dominated (13%)
- Systematic wise the dominant sources are related to
 - muons (trigger efficiency)
 - tracking efficiency
 - luminosity
- Total uncertainty (16%) comparable to the current theory uncertainty (10%)
 - difficult to discriminate between existing models
 - model-dependent limits on anomalous moments can be set

Source	Relative uncertainty (%)
Muon scale factor	6.7
Luminosity measurement	5.0
Pion scale factor	3.6
MC sample size (bin by bin)	3.0
MC sample size (efficiency)	1.1
HF scale effect on background shape	0.9
τ lepton branching fraction measurement	0.6
Effect of N_{ch} on background shape	0.2
Total	9.7

Constraints on a_{τ} and **expected performance** at HL-LHC

- Using the theo calculation of $\sigma(\gamma\gamma \to \tau\tau)$ as a function of a_{τ} -scale only
 - first limits at LHC can be obtained

- We expect a total uncertainty well below the current theory uncertainty
 - we can discriminate between existing models
 - projected limit at HL-LHC competing with LEP

ATLAS+CMS Snowmass22 WhitePaper

Outlook

- LHC heavy ion collision (HIC) data are a gamechanger
 - accelerator performance well surpassed any initial expectations
 - exploiting HIC is a <u>unique and complementary means</u> to search for BSM phenomena
 - but also **improve** exisiting models
- A **dedicated physics program** for studying a_{τ} is initiated in CMS
 - with 2015 CMS data we establish the signal
 - $\gamma\gamma \rightarrow \tau\tau$ signal region defined based on **lepton** and **track** multiplicity
 - 1µ + 3 tracks
 - further improvements with inclusion of existing/upcoming data & improved techniques
 - HL-LHC baseline projection done for the expected limits on $a_{_{\rm T}}$
- Ample room for cross-experiment collaboration
 - existing measurements can be used for further combinations of HIC data at LHC

Heavy ion collisions (HIC) at LHC

- LHC collided **more** types of beam, than originally foreseen, with **better** than expected performance
 - o In practice, we've come close to the "HL-LHC" performance with pPb and PbPb collisions
- Opens up **further opportunities** for **probes** not accessible so far due to lower luminosity and/or energy
 - o two one-month runs would be needed to reach the Runs 3+4 target of 1200 /nb in pPb
 - o five one-month runs would be needed to reach the Runs 3+4 target of 13 /nb in PbPb
 - all 4 experiments participate
 - makes luminosity sharing far more challenging than high-pileup pp running
 - complementary phase space regions, cross checks