W mass measurement and other Electroweak searches at LHCb

Miguel Ramos Pernas

on behalf of the LHCb collaboration

University of Warwick

miguel.ramos.pernas@cern.ch

DIS 2022, Santiago de Compostela

Electroweak physics

- Current measurements of electroweak observables are consistent with the SM predictions (with some tensions)
- Precision measurements of these quantities allow to search for new physics effects
- Challenging both from the theoretical (modelling) and experimental points of view

The LHCb detector to study EW signatures

- Detector in the forward region with excellent momentum and vertex resolutions
- Coverage is complementary to ATLAS and CMS (with some overlapping at low pseudorapidity)

The W mass measurement

- Measure the W boson mass by studying the transverse momentum spectrum of the outgoing muon
- Uncertainty from PDFs is anticorrelated to that of ATLAS/CMS ⇒ LHC experiments can achieve a sensitivity closer to the global EW fit (~7 MeV)

Analysis using 2016 data only

The W cross-section

Small dependency on the angular coefficients for the W mass measurement at LHCb except for A₃

(See <u>talk by Menglin Xu</u> for more details)

Simulating signal decays

- POWHEG + Pythia gives the best description of the unpolarized cross-section and is chosen as the baseline generator
 - Varied success with other generators, used to determine systematic uncertainties
- DYTurbo performs well at reproducing the angular cross-section

Alignment and calibration of the detector

- The W mass determination is highly sensitive to misalignments and misclabrations of the detector
- Offline tools used to improve the determination of the transverse momentum

$$M^\pm = \sqrt{2p^\pm p_T^\pm rac{p^\mp}{p_T^\mp}(1-\cos heta)}$$
 Inspired by Phys. Rev. D 91, 072002

Backgrounds

- Most of them modelled from dedicated simulated samples
 - Single-top, quark/anti-quark (t, b, c), Z/W decays, Drell-Yan
 - o Cross-sections normalized to the W
- Description of the QCD background (decays-in-flight) obtained from data
 - Sample with inverted muon-identification requirements
 - Weight and parametrize the data using a Hagedorn distribution
- Accurately describes the Jacobian peak (region with highest sensitivity to $m_{\rm w}$)

Systematic uncertainties

The W mass fit

Including 2017 + 2018 data \Rightarrow < 20 MeV

New strategies/tools?

Improvements to the physics modelling

The current picture of the measurement

- Striking result from the CDF II collaboration in early April [Science, 376, 6589, (136-136), (2022)], with unprecedented precision
- 7σ away from the electroweak fits, and in tension with other experimental results
- Open questions now being raised:
 - Resolution, efficiency and detector response
 - Physics modelling (proton-proton, proton-antiproton, PDFs, ...)
- Encouraging the full LHC combination

Other Electroweak measurements

Angular coefficients

- Study of dimuon decays around the Z peak using 2016-2018 data
- Z production studied in the past at LHCb [EPIC 71:1600, 2011], but the angular information had not been analysed yet
- Valuable input to understand momentum-spin correlations of the proton
- Interesting violation Lam-Tung relation $(A_0=A_2)$ in agreement with ATLAS [JHEP 2016, 159 (2016)] and CMS [PLB 750 (2015) 154] results

Sensitive to the weak-mixing angle; not reported

Fixed to zero due to small number of candidates at high transverse momentum

[arXiv:2203.01602 (submitted to PRL)]

(See <u>talk by Menglin Xu</u> for more details)

Forward-backward asymmetry in Z decays

- Test of vector and axial-vector couplings in the SM, which induce a forward-backward asymmetry in Z boson decays
- Dependency with the weak mixing angle
- The asymmetry must be measured with respect to the direction of motion of the quarks
 - Assume that quarks travel in the direction of the Z boson
- Possibility to beat LEP + SLD measurements in the HL-LHC [CERN-LHCC-2018-027]

[ATLAS-CONF-2018-037]

Prospects and summary

Prospects and summary

- LHCb has proved to be competitive with the previous and current experiments for a precise W mass measurement
- The new result from the CDF-II collaboration constitutes a drastic change to the current scenario
 - Pushes the LHC towards releasing a combined result and theorists towards a better understanding of the physics modelling
- LHCb also offers a unique opportunity to study other EW observables in the forward region, usually complementary to other experiments

Exciting times ahead of us!

Backup

LHCb luminosity

Charge-dependent curvature biases

- The analysis relies highly on the detector alignment
 - O Misalignment of 10μm translates into a O(50MeV) shift
- Default LHCb alignment and calibration not suitable to study candidates with high transverse momentum
- Need to re-run the alignment and calibration offline using Z decays
- Avoid double bias from the momentum resolution using the pseudo-mass method

$$M^{\pm} = \sqrt{2p^{\pm}p_T^{\pm}\frac{p^{\mp}}{p_T^{\mp}}(1-\cos\theta)}$$

Inspired by Phys. Rev. D 91, 072002

The simulation process (PDF set)

- PDFs chosen from three different recent sets
 - NNPDF3.1: [Eur. Phys. J. C 77, 663 (2017)]
 - o CT18: [Phys. Rev. D 103, 014013]
 - o MSHT20: <u>Eur. Phys. J. C 81, 341 (2021)</u>
- The result is an average of the three

118 **LHCb** NNPDF31 1.7 fb⁻¹ 116 CT18 114 MSHT20 112 110 108 106 104 102 80320 80340 80360 80380 m_w [MeV]

[JHEP 01 (2022) 036], [LHCB-PAPER-2021-024]

Selections

- EW physics with leptons in the final state can be done at LHCb with simple selections based on the transverse momentum, impact parameter, isolation and particle identification
- Selection biases studied in data and simulation for Z and Y(1S) decays (isolation biases only studied in the former)
 - Associated systematic uncertainties determined by varying the binning scheme, parametrizations and selections

$$I = \sum_i^n p_T^i \in ext{cone}$$

$$\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2 ig(\mathrm{rad}^{-2}ig)}$$

Determining the efficiencies

Three main sources of acceptance biases:

- Trigger efficiencies
- Muon-identification efficiencies
- Isolation requirements

Corrections predominantly at the percent level

[JHEP 01 (2022) 036], [LHCB-PAPER-2021-024]

Number of candidates per experiment

Experiment	Muon channel	Electron channel	Result (MeV)	Stat. Unc. (MeV)	Total Unc. (MeV)
ATLAS	7.8 x 10 ⁶	5.9 x 10 ⁶	80370	7	19
LHCb	2.4 x 10 ⁶	N/A	80354	23	32
CDF-II	2.4 x 10 ⁶	1.8 x 10 ⁶	80433.5	6.4	9.4

ATLAS: [EPJC 78 (2018) 110]

LHCb: [JHEP 01 (2022) 036], [LHCB-PAPER-2021-024]

CDF: [Science, 376, 6589, (136-136), (2022)]

W boson mass correlations

