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What we do know:

● Interact through gravity

● Massive (to cluster)

● If DM particles ever were relativistic – they 
should have slowed down early in the history of 
the Universe

● Electrically neutral (do not interact with photons)

● Stable on cosmological scales
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DM particles: intriguing and confusing

What we do know:

● Interact through gravity

● Massive (to cluster)

● If DM particles ever were relativistic – they 
should have slowed down early in the history of 
the Universe

● Electrically neutral (do not interact with photons)

● Stable on cosmological scales

What we don’t know:

• Other interactions?
• Mass, spin….?
• Several species?
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Why the electroweak scale?

Assumption:

thermal production 

Very simplified WIMPS

One new "heavy" particle

Planck

at decoupling
+

Not in equilibrium with plasma

In equilibrium with plasma
Relic abundance

"Natural" choice:
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Alternatives?

Light: m < few GeV

Direct detection 

Colliders + beyond 
e.g. Belle II physics Book [1808.10567],
Physics Beyond Colliders at CERN [1901.09966]

e.g. Essig et al. [1509.01598], [1907.07682] 
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CTA: Rinchiuso et al.  [2008.00692], 
Hess: Rinchiuso et al.  [1908.04317], 
IceCube: Kachelriess et al. [1805.04500]

Light: m < few GeV

Direct detection 

Colliders + beyond 
e.g. Belle II physics Book [1808.10567],
Physics Beyond Colliders at CERN [1901.09966]

e.g. Essig et al. [1509.01598], [1907.07682] 

Different mass-coupling relation?

WIMPless miracle, coannihilation, forbidden 
dark matter

e.g Binder et al. [1706.07433], D'Agnolo et al. [1705.08450]

Non-thermal

Freeze-in

Early kinetic decoupling, coscattering

e.g. Hall et al.  [0911.1120], Bélanger et al.  [1811.05478]

e.g Feng & Kumar [0905.3039], Griest & Seckel 1991, D’Agnolo 
& Ruderman [1505.07107]
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From coannihilation to coscattering (inelastic scattering)

But eventually DM No Direct detection signal

Coannihilation

SM

SM

at decoupling

Griest & Seckel 1991

Very high

Correct relic abundance

for much smaller couplings

Boltzmann suppressed

+
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SM SM

SM
• Partner decays are slow during decoupling.

• But they are also long-lived at colliders!

DM

D
• Both dark states present at decoupling — 

   compressed spectrum.

So just continue searching?

Defines of SM

D

DM + SM
we search for Particles are soft
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~Electroweak scale

pp-experiments: LHC

Soft products 

High backgrounds

New experimental developments 

(e.g. cross-triggers)
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LLPs @ colliders: heavy vs. light

MeV-GeV scale

Also at ee-experiments: Belle II

Very clean signatures

Bonus: 

B-mesons are produced almost at rest

Large lifetimes can be probed

~Electroweak scale

pp-experiments: LHC

Soft products 

High backgrounds

New experimental developments 

(e.g. cross-triggers)
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LLP and missing energy searches at Belle II are very promising! 

Dark scalar: 

Displaced starches can compete with proposed

long-baseline experiments

ALPs (fermion coupling only): 

Complementarity of invisible and displaced searches.

AF, R. Schäfer, S. Westhoff [1911.03490] T. Ferber, AF, R. Schäfer, S. Westhoff [2201.06580]

A new search strategy for two-body invisible decays 11



Alternative dark matter candidates?

Heavy: m > few TeV

Telescopes
e.g. Antares: [1912.05296], 
CTA: Rinchiuso et al.  [2008.00692], 
Hess: Rinchiuso et al.  [1908.04317], 
IceCube: Kachelriess et al. [1805.04500]

Light: m < few GeV

Direct detection 

Colliders + beyond 
e.g. Belle II physics Book [1808.10567],
Physics Beyond Colliders at CERN [1901.09966]

e.g. Essig et al. [1509.01598], [1907.07682] 

Different mass-coupling relation?

WIMPless miracle, coannihilation, forbidden 
dark matter

e.g Binder et al. [1706.07433], D'Agnolo et al. [1705.08450]

Non-thermal

Freeze-in

Early kinetic decoupling, coscattering
e.g. Hall et al.  [0911.1120], Bélanger et al.  [1811.05478]
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Light mediators = long-range interactions

Interaction length 
 

for scattering statesfor bound states

DM

DM

DM

DM

med

Typically, viable scenarios have dark matter at multi-GeV or TeV scale
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Dramatic example: scalar mediator

Oncala, Petraki [1911.02605]

Relic density predictions change 
by orders of magnitude!

Huge enhancement from BSFΦ

Changes all pheno predictions 
(DD, ID, colliders..)!

+ Higgs portal models,
Oncala, Petraki [2101.08666/7] 15
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● Bound states appear in many simple (and familiar) DM models

e.g. dark U(1), coannihilation in dark SU(3) sectors, scalar mediators

Why to care about bound states?

● They significantly affect relic density predictions

● Consequently, they change DM pheno today 

Need to be included in many DM calculations and public codes

Need a general formalism to account for bound states 
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The big challenge
In general, to incorporate bound states in DM thermal decoupling, one needs to solve 

a set of coupled Boltzmann equations for the bound (YB) and unbound (Yi) species.
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The big challenge
In general, to incorporate bound states in DM thermal decoupling, one needs to solve 

a set of coupled Boltzmann equations for the bound (YB) and unbound (Yi) species.

with and

However, in most models, this system can be simplified to one effective Boltzmann equation
Binder, AF, Petraki, White [2112.00042], see also Garny Heisig [2112.01499]

17



Conclusions

• Strong direct detection constraints point us to less conventional dark matter scenarios

• Viable scenarios are very different at different energy scales

• Well-known models have features that dramatically affect dark matter phenomenology, 
and therefore change the search strategies
(e.g. existence of long-lived particles or bound states)

• At MeV-GeV scale, displaced and invisible searches at electron colliders are very promising 

• Displaced and invisible searches are complementary. They both require attention when exploring 
the parameter space of a feebly-interacting model

• Bound states are a whole new avenue in dark matter community. We are still developing the 
framework to understand them but they will definitely change many of our predictions

18



Backup



Dark scalar model
Decay width

New scalarHiggs

Can play role of DM candidate



ALP model



ALP invisible searches: kinematics and selection criteria



ALP model: projections for photon coupling only



Coupled system of Boltzmann equations 

However:

● Assume fast transitions

● At high temperatures, ionisations are efficient;
at low temperatures - decays (directly or via transitions) are fast

Binder, AF, Petraki, White [2112.00042]

This approximation was first proposed by Ellis, Luo Olive [1503.07142]



One effective Boltzmann equation 
Binder, AF, Petraki, White [2112.00042]

also see Garny Heisig [2112.01499]

Some definitions:

Total DM yield

Total rates for a given bound state Matrix notations

Bound state 
efficiency factor



Binder, AF, Petraki, White [2112.00042]

Saha ionisation equilibrium for metastable bound states

(Algebraic) eq. for bound states + detailed balance + definition of efficiency factor:

(familiar expression)
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