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DM particles: intriguing and confusing

What we do know: . ol
. MinlmumDM

B Max.
additional
Neutrino DM

B Non-Meutrino
DM

e [nteract through gravity

e Massive (to cluster)

e |f DM particles ever were relativistic — they Ereil e Binge
should have slowed down early in the history of

n .
the Universe What we don’t know:

e Electrically neutral (do not interact with photons)
* Other interactions?

e Stable on cosmological scales * Mass, spin....?
* Several species?
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Why the electroweak scale? & . ™

I, > H Inequilibrium with plasma

Assumption: Q ——  Relic abundance
thermal production I'ine < H Notin equilibrium with plasma
o2
Very simplified WIMPS (ov) ~ — nppy{ov) ~ H
™MDy
One new "heavy" particle at decoupling
"Natural" choice:
S @1026cm351(or 1077[GeV]72) a~ QEW
DM ™ (o) mpyr ~ O(100GeV)

Planck
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Light: m < few GeV Non-thermal

Direct detection

e.g. Essig et al. [1509.01598], [1907.07682] Freeze-in

Colliders + beyond e.g. Hall et al. [0911.1120], Bélanger et al. [1811.05478]
e.g. Belle Il physics Book [1808.10567],

Physics Beyond Colliders at CERN [1901.09966]

Early kinetic decoupling, coscattering
e.g Binder et al. [1706.07433], D'Agnolo et al. [1705.08450
Heavy: m > few TeV o [ bR : :

Telescopes Different mass-coupling relation?

WIMPless miracle, coannihilation, forbidden
e.g. Antares: [1912.05296], dark tt
CTA: Rinchiuso et al. [2008.00692], ark matter
Hess: Rinchiuso et al. [1908.04317],

IceCube: Kachelriess et al. [1805.04500] e.g Feng & Kumar [0905.3039], Griest & Seckel 1991, D’Agnolo

& Ruderman [1505.07107]
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From coannihilation to coscattering (inelastic scattering)

Coannihilation
Griest & Seckel 1991

But eventually

Coscattering

(inelastic scattering)
Not always thermal
(early kinetic decoupling)

D'Agnolo et al. [1705.08450]
AF & S. Westhoff [1812.04628]
AF, S Junius, LL Honorez & S.
Westhof [2201.08409]
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Correct relic abundance

for much smaller couplings
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* Both dark states present at decoupling —

compressed spectrum.

D

we search for 1
DM + SM

* Partner decays are slow during decoupling.

* But they are also long-lived at colliders!

D
Am
— ~10%
DM m
Defines PT of SM :> Particles are soft
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~Electroweak scale

pp-experiments: LHC

Soft products

v

High backgrounds

v

New experimental developments

(e.g. cross-triggers)

MeV-GeV scale

Also at ee-experiments: Belle Il

Very clean signatures

Bonus:

B-mesons are produced almost at rest

U

Large lifetimes can be probed
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LLP and missing energy searches at Belle Il are very promising!

Dark scalar: ALPs (fermion coupling only):
Displaced starches can compete with proposed Complementarity of invisible and displaced searches.
long-baseline experiments
1 AF, R. Schafer, S. Westhoff [1911.03490] T. Ferber, AF, R. Schafer, S. Westhoff [2201.06580]
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A new search strategy for two-body invisible decays
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e.g. Belle Il physics Book [1808.10567], Early kinetic decoupling, coscattering

Physics Beyond Colliders at CERN [1901.09966] e.g Binder et al. [1706.07433], D'Agnolo et al. [1705.08450]

Heavy: m > few TeV Different mass-coupling relation?
Telescopes WIMPless miracle, coannihilation, forbidden
e.g. Antares: [1912.05296], dark matter
CTA: Rinchiuso et al. [2008.00692], e.g Feng & Kumar [0905.3039], Griest & Seckel 1991, D’'Agnolo
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Colliders + beyond

e.g. Belle Il physics Book [1808.10567],
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Non-thermal
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Early kinetic decoupling, coscattering
e.g Binder et al. [1706.07433], D'Agnolo et al. [1705.08450]
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Heavy: m > few TeV

Telescopes

e.g. Antares: [1912.05296],

CTA: Rinchiuso et al. [2008.00692],
Hess: Rinchiuso et al. [1908.04317],
K IceCube: Kachelriess et al. [1805.04500]
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Different mass-coupling relation?

WIMPless miracle, coannihilation, forbidden
dark matter

e.g Feng & Kumar [0905.3039], Griest & Seckel 1991, D’Agnolo
& Ruderman [1505.07107]

Thinking of a minimal setup:
BSM (heavy) DM + SM mediator
+ let’'s keep DM thermal (we like it)

D4
<

How heavy can DM be?




Light mediators = long-range interactions

13



Light mediators = long-range interactions

DM DM
med

DM DM

f=mpnr/2

13



Light mediators = long-range interactions

DM DM

med

Interaction length ~ 1 > 1 : 1 DM DM
Mmed MO [AUye] e mDM/2

13



Light mediators = long-range interactions

DM DM

med

1 1 1
[Interaction length  ~ > : DM DM
Mmed = MG [LUre] e mDM/2

N

for bound states for scattering states

13



Light mediators = long-range interactions

. 1 1
Interaction length ~u > ,
Mmed N MO [UUre]

N

for bound states for scattering states

Typically, viable scenarios have dark matter at multi-GeV or TeV scale

DM

DM

med

1=mpn/2

DM

DM
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Huge enhancement from BSF,

Oncala, Petraki [1911.02605]

Relic density predictions change
by orders of magnitude!
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e Bound states appear in many simple (and familiar) DM models

e.g. dark U(1), coannihilation in dark SU(3) sectors, scalar mediators

e They significantly affect relic density predictions

e Consequently, they change DM pheno today

[ Need to be included in many DM calculations and public codes

1

|

V

[ Need a general formalism to account for bound states ]
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The big challenge

In general, to incorporate bound states in DM thermal decoupling, one needs to solve

a set of coupled Boltzmann equations for the bound (Y ;) and unbound (Y,) species.

GYJ A ann e e YB e e \
—=-5 Zwﬂ. vrel) (Y;Yi — Y7IY29) — 5 ZZ oBET - Vrel) (YY quY dy Q>

Yi se
—A$Z<F3—>z> <Y7 - qu}/}q)

1

d ec e 10n e rans Y e
- = —A:L‘ <Fd > (Y Y q + Z FB—)Z] (YB ququ Y & + Z ]'—111;3—)23’ ( quY q)
1.7 B'#£8 5!
Y \/7 1/2 A A 45 mpy g2/
=/ —mpim ==l
with a5 EVITEG and s 3 473 m2 g,g

However, in most models, this system can be simplified to one effective Boltzmann equation
Binder, AF, Petraki, White [2112.00042], see also Garny Heisig [2112.01499]
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Conclusions

* Strong direct detection constraints point us to less conventional dark matter scenarios
* Viable scenarios are very different at different energy scales
* Well-known models have features that dramatically affect dark matter phenomenology,
and therefore change the search strategies
(e.g. existence of long-lived particles or bound states)

* At MeV-GeV scale, displaced and invisible searches at electron colliders are very promising

* Displaced and invisible searches are complementary. They both require attention when exploring
the parameter space of a feebly-interacting model

* Bound states are a whole new avenue in dark matter community. We are still developing the
framework to understand them but they will definitely change many of our predictions
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Dark scalar model
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ALP model
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ALP Invisible searches: kinematics and selection criteria
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ALP model: projections for photon coupling only
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Binder, AF, Petraki, White [2112.00042]

Coupled system of Boltzmann equations

/Y BSF

ann C e &
g o Z vel) (VY — Y9Y79) o ZZ(%_}B Vrel) (YY quy eqay-eq
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However:

" —
e Assume fast transitions F’L<—>g — K/Y; = w

e At high temperatures, ionisations are efficient; dYp

at low temperatures - decays (directly or via transitions) are fast — T 2=

This approximation was first proposed by Ellis, Luo Olive [1503.07142]



Binder, AF, Petraki, White [2112.00042]

One effective Boltzmann equation o0 see Gamyieisi (211201459
Some definitions: Total rates for a given bound state Matrix notations
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Binder, AF, Petraki, White [2112.00042]

Saha ionisation equilibrium for metastable bound states

(Algebraic) eq. for bound states + detailed balance + definition of efficiency factor:
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