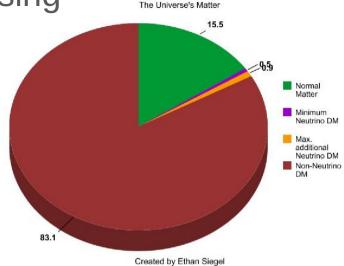
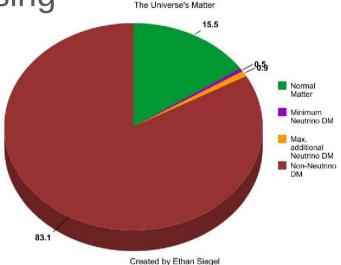


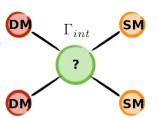
Unconventional thermal(-ish) dark matter

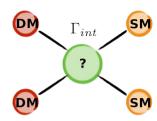

Anastasiia Filimonova

DIS2022 Santiago de Compostela

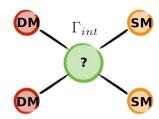

What we do know:

- Interact through gravity
- Massive (to cluster)
- If DM particles ever were relativistic they should have slowed down early in the history of the Universe
- Electrically neutral (do not interact with photons)
- Stable on cosmological scales

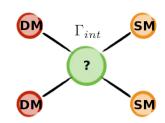

What we do know:


- Interact through gravity
- Massive (to cluster)
- If DM particles ever were relativistic they should have slowed down early in the history of the Universe
- Electrically neutral (do not interact with photons)
- Stable on cosmological scales

What we don't know:


- Other interactions?
- Mass, spin....?
- Several species?

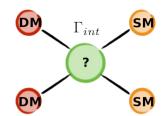
Assumption:


thermal production

 $\Gamma_{int} > H$ In equilibrium with plasma

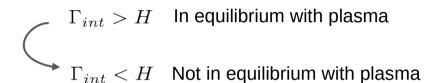
Assumption:

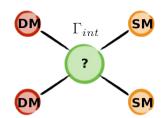
thermal production



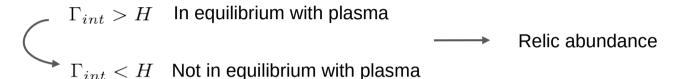
$$\Gamma_{int} > H$$
 In equilibrium with plasma

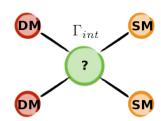
Assumption:


thermal production

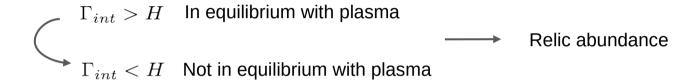

 $\Gamma_{int} < H$ Not in equilibrium with plasma

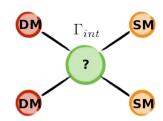
Assumption:


thermal production



Assumption:


thermal production


Assumption:

thermal production

Very simplified WIMPS

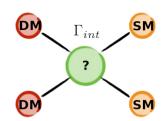
One new "heavy" particle

Assumption:

thermal production

 $\Gamma_{int} > H$ In equilibrium with plasma

 $\Gamma_{int} < H$ Not in equilibrium with plasma


Relic abundance

Very simplified WIMPS

One new "heavy" particle

$$\langle \sigma v \rangle \sim \frac{\alpha^2}{m_{DM}^2} \hspace{0.1cm} + \hspace{0.1cm} n_{DM} \langle \sigma v \rangle \sim H$$
 at decoupling

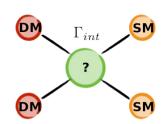
3

Relic abundance

Assumption:

thermal production

$$\Gamma_{int} > H$$
 In equilibrium with plasma


 $\Gamma_{int} < H$ Not in equilibrium with plasma

$$\langle \sigma v \rangle \sim \frac{\alpha^2}{m_{DM}^2} + n_{DM} \langle \sigma v \rangle \sim H$$

Very simplified WIMPS

One new "heavy" particle

$$\Omega_{DM}h^2 \sim 0.12 \frac{10^{-26} \mathrm{cm}^3 s^{-1} (\mathrm{or} \ 10^{-9} [GeV]^{-2})}{\langle \sigma v \rangle}$$
 Planck

Assumption:

thermal production

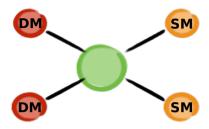
 $\Gamma_{int} > H$ In equilibrium with plasma

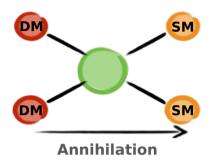
 $\Gamma_{int} < H$ Not in equilibrium with plasma

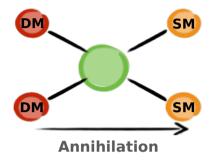
→ Relic abundance

Very simplified WIMPS

$$\langle \sigma v \rangle \sim \frac{\alpha^2}{m_{DM}^2} \hspace{0.1cm} + \hspace{0.1cm} n_{DM} \langle \sigma v \rangle \sim H$$
 at decoupling

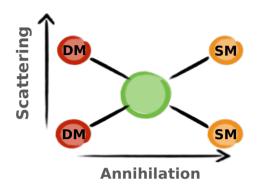

One new "heavy" particle

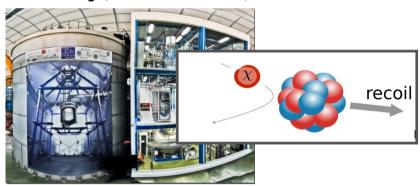

$$\Omega_{DM}h^2 \sim 0.12 \frac{10^{-26} \mathrm{cm}^3 s^{-1} (\mathrm{or} \ 10^{-9} [GeV]^{-2})}{\langle \sigma v \rangle}$$
 Planck

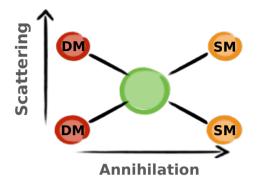

"Natural" choice:

$$\alpha \sim \alpha_{EW}$$

 $m_{DM} \sim O(100 {\rm GeV})$

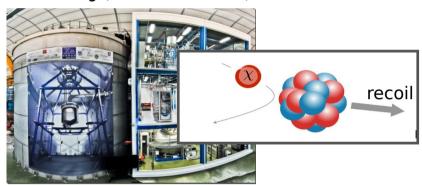


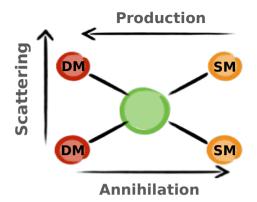

Fermi satellite



Fermi satellite

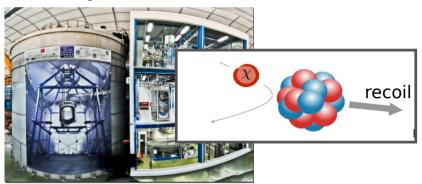
Scattering (direct detection)

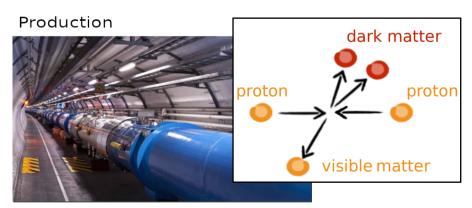

Xenon experiment



Fermi satellite

Scattering (direct detection)

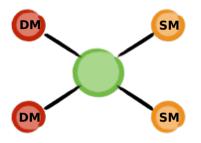

Xenon experiment

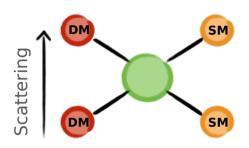


Fermi satellite

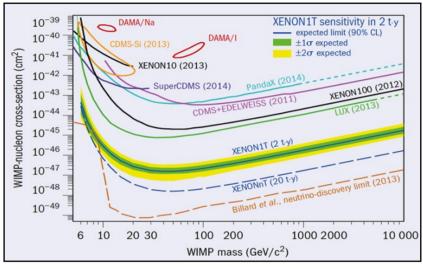
Scattering (direct detection)

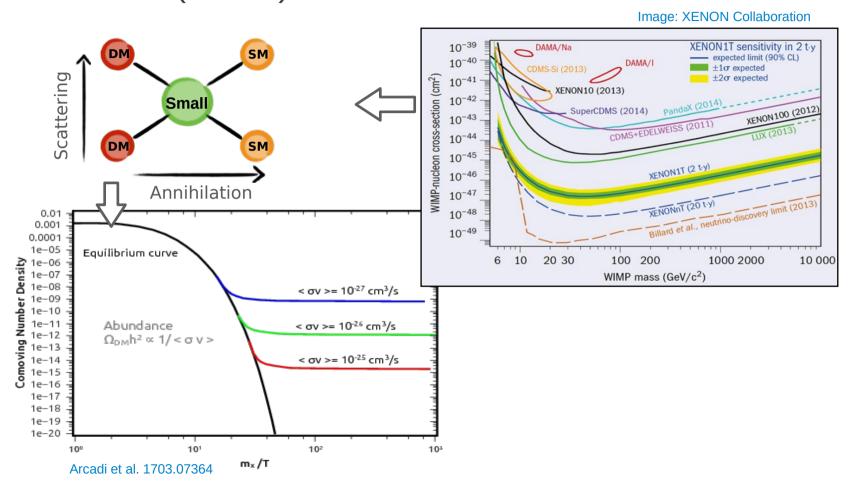
Xenon experiment

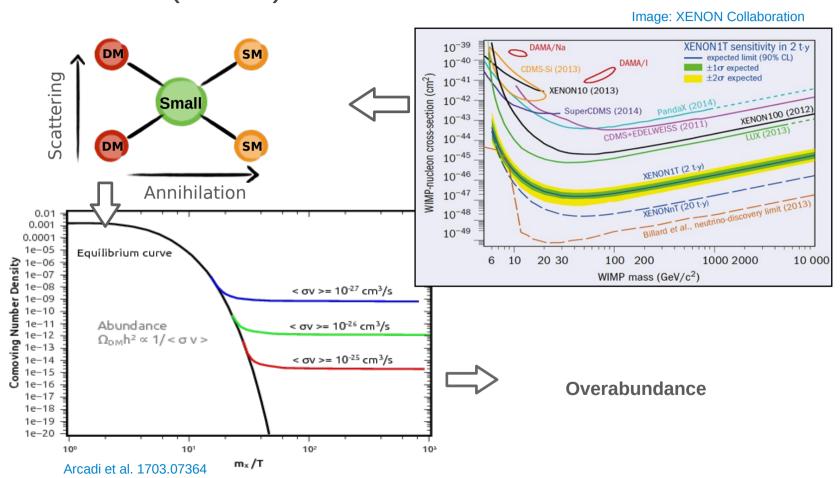



Production SM SM Annihilation

Annihilation (indirect detection)




Fermi satellite



Light: m < few GeV

Direct detection

e.g. Essig et al. [1509.01598], [1907.07682] Colliders + beyond

e.g. Belle II physics Book [1808.10567], Physics Beyond Colliders at CERN [1901.09966]

Light: m < few GeV

Direct detection

e.g. Essig et al. [1509.01598], [1907.07682] Colliders + beyond

e.g. Belle II physics Book [1808.10567], Physics Beyond Colliders at CERN [1901.09966]

Heavy: m > few TeV

Telescopes

e.g. Antares: [1912.05296], CTA: Rinchiuso et al. [2008.00692], Hess: Rinchiuso et al. [1908.04317], IceCube: Kachelriess et al. [1805.04500]

Light: m < few GeV

Direct detection

e.g. Essig et al. [1509.01598], [1907.07682] Colliders + beyond

e.g. Belle II physics Book [1808.10567], Physics Beyond Colliders at CERN [1901.09966]

Heavy: m > few TeV

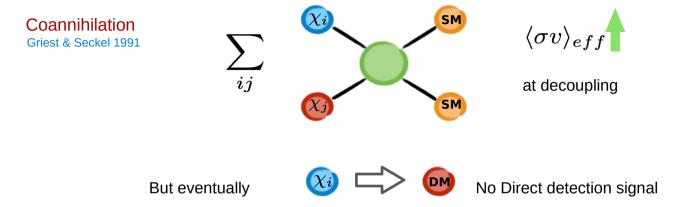
Telescopes

e.g. Antares: [1912.05296], CTA: Rinchiuso et al. [2008.00692], Hess: Rinchiuso et al. [1908.04317], IceCube: Kachelriess et al. [1805.04500]

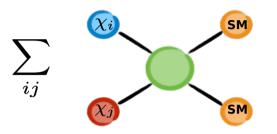
Non-thermal

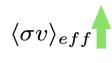
Freeze-in

e.g. Hall et al. [0911.1120], Bélanger et al. [1811.05478]


Early kinetic decoupling, coscattering

e.g Binder et al. [1706.07433], D'Agnolo et al. [1705.08450]


Different mass-coupling relation?

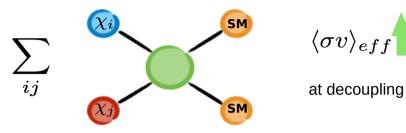

WIMPless miracle, coannihilation, forbidden dark matter

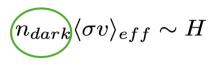
e.g Feng & Kumar [0905.3039], Griest & Seckel 1991, D'Agnolo & Ruderman [1505.07107]

at decoupling

 $n_{dark} \langle \sigma v \rangle_{eff} \sim H$

But eventually

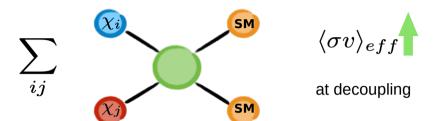


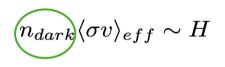


No Direct detection signal

Boltzmann suppressed

But eventually





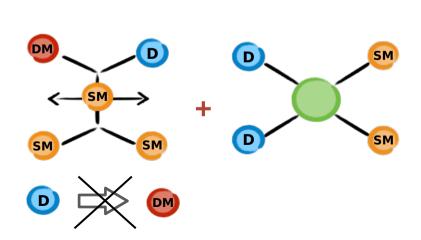
No Direct detection signal

Griest & Seckel 1991

Boltzmann suppressed

But eventually

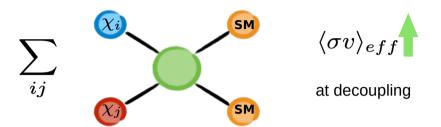
No Direct detection signal

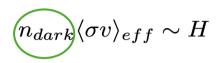

Coscattering

(inelastic scattering)

Not always thermal

(early kinetic decoupling)


D'Agnolo et al. [1705.08450] AF & S. Westhoff [1812.04628] AF, S Junius, LL Honorez & S. Westhof [2201.08409]



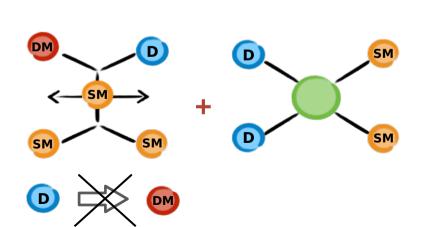
From coannihilation to coscattering (inelastic scattering)

Griest & Seckel 1991

Boltzmann suppressed

But eventually

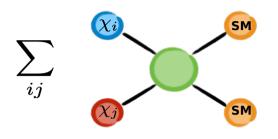
No Direct detection signal


Coscattering

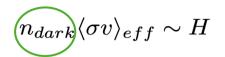
(inelastic scattering)

Not always thermal

(early kinetic decoupling)


D'Agnolo et al. [1705.08450] AF & S. Westhoff [1812.04628] AF, S Junius, LL Honorez & S. Westhof [2201.08409]

 $n_{SM} \langle \sigma v \rangle_{DM \to M} \sim H$

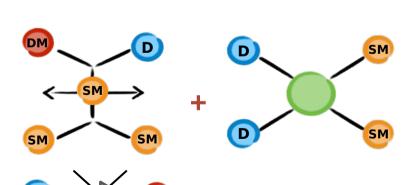

From coannihilation to coscattering (inelastic scattering)

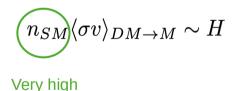
at decoupling

Boltzmann suppressed

But eventually

No Direct detection signal

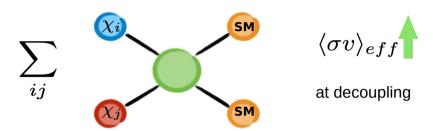

Coscattering

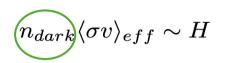

(inelastic scattering)

Not always thermal

(early kinetic decoupling)

D'Agnolo et al. [1705.08450] AF & S. Westhoff [1812.04628] AF, S Junius, LL Honorez & S. Westhof [2201.08409]





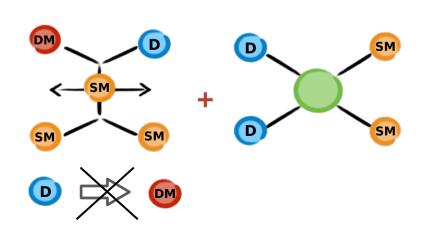
From coannihilation to coscattering (inelastic scattering)

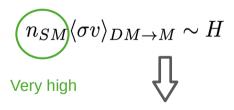
Griest & Seckel 1991

Boltzmann suppressed

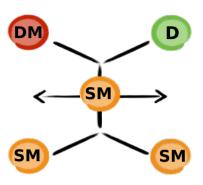
But eventually

No Direct detection signal

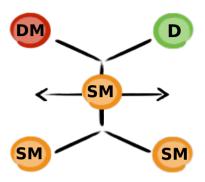

Coscattering


(inelastic scattering)

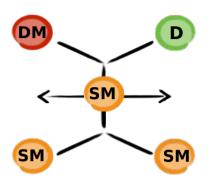
Not always thermal


(early kinetic decoupling)

D'Agnolo et al. [1705.08450] AF & S. Westhoff [1812.04628] AF, S Junius, LL Honorez & S. Westhof [2201.08409]



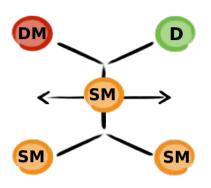
Correct relic abundance for much smaller couplings


- Partner decays are slow during decoupling.
- But they are also long-lived at colliders!

- Partner decays are slow during decoupling.
- But they are also long-lived at colliders!

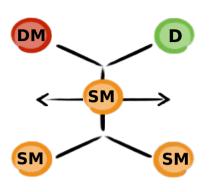
Both dark states present at decoupling —
 compressed spectrum.


$$rac{\Delta m}{m} \simeq 10\%$$



- Partner decays are slow during decoupling.
- But they are also long-lived at colliders!

Both dark states present at decoupling —
 compressed spectrum.


- Partner decays are slow during decoupling.
- But they are also long-lived at colliders!

Both dark states present at decoupling —
 compressed spectrum.

$$\frac{\Delta m}{m} \simeq 10\%$$

Defines p_T of SM

- Partner decays are slow during decoupling.
- But they are also long-lived at colliders!

Both dark states present at decoupling —
 compressed spectrum.

we search for $\begin{array}{c|c} \hline \textbf{D} \\ \hline \\ \hline \\ \textbf{DM + SM} \\ \end{array}$

Defines p_T of SM

Particles are soft

LLPs @ colliders: heavy vs. light

LLPs @ colliders: heavy vs. light

~Electroweak scale

pp-experiments: LHC

Soft products

High backgrounds

New experimental developments

(e.g. cross-triggers)

LLPs @ colliders: heavy vs. light

~Electroweak scale

pp-experiments: LHC

Soft products

High backgrounds

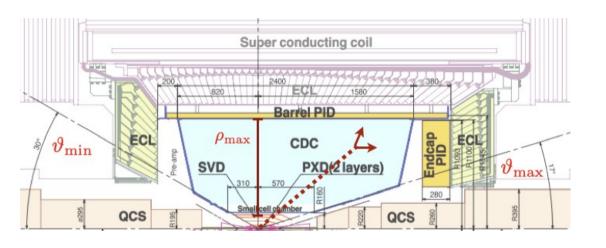
New experimental developments

(e.g. cross-triggers)

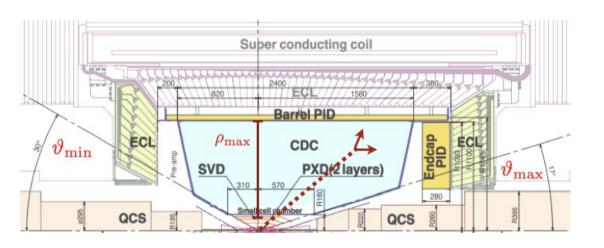
MeV-GeV scale

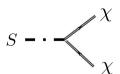
Also at ee-experiments: Belle II

Very clean signatures


Bonus:

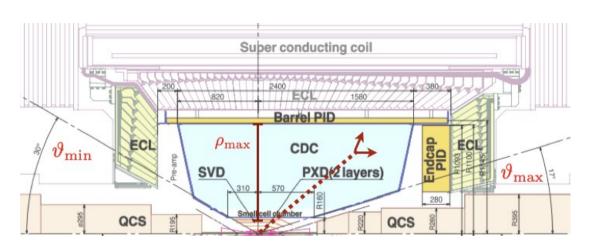
B-mesons are produced almost at rest

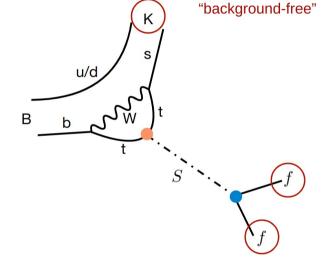


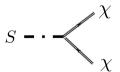

Large lifetimes can be probed

LLP and missing energy searches at Belle II

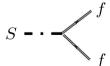
LLP and missing energy searches at Belle II



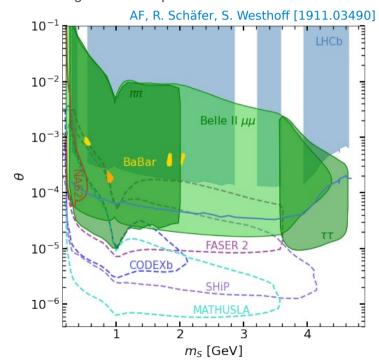

Missing energy


$$S - \cdot - \left(\int_{f}^{f} dx \right) dx$$

Displaced searches

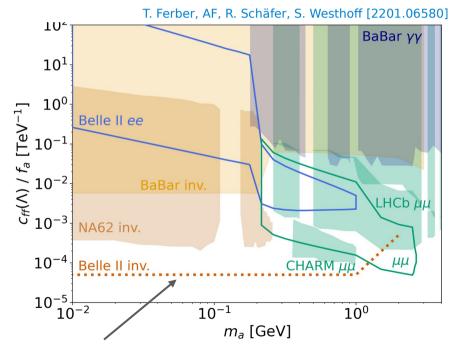

LLP and missing energy searches at Belle II

Missing energy



Displaced searches

LLP and missing energy searches at Belle II are very promising!


Dark scalar:

Displaced starches can compete with proposed long-baseline experiments

ALPs (fermion coupling only):

Complementarity of invisible and displaced searches.

A new search strategy for two-body invisible decays

Alternative dark matter candidates?

Light: m < few GeV

Direct detection

e.g. Essig et al. [1509.01598], [1907.07682] Colliders + beyond

e.g. Belle II physics Book [1808.10567], Physics Beyond Colliders at CERN [1901.09966]

Heavy: m > few TeV

Telescopes

e.g. Antares: [1912.05296], CTA: Rinchiuso et al. [2008.00692], Hess: Rinchiuso et al. [1908.04317], IceCube: Kachelriess et al. [1805.04500]

Non-thermal

Freeze-in

e.g. Hall et al. [0911.1120], Bélanger et al. [1811.05478]

Early kinetic decoupling, coscattering

e.g Binder et al. [1706.07433], D'Agnolo et al. [1705.08450]

Different mass-coupling relation?

WIMPless miracle, coannihilation, forbidden dark matter

e.g Feng & Kumar [0905.3039], Griest & Seckel 1991, D'Agnolo & Ruderman [1505.07107]

Alternative dark matter candidates?

Light: m < few GeV

Direct detection

e.g. Essig et al. [1509.01598], [1907.07682] Colliders + beyond

e.g. Belle II physics Book [1808.10567], Physics Beyond Colliders at CERN [1901.09966]

Heavy: m > few TeV

Telescopes

e.g. Antares: [1912.05296], CTA: Rinchiuso et al. [2008.00692], Hess: Rinchiuso et al. [1908.04317], IceCube: Kachelriess et al. [1805.04500]

Non-thermal

Freeze-in

e.g. Hall et al. [0911.1120], Bélanger et al. [1811.05478]

Early kinetic decoupling, coscattering

e.g Binder et al. [1706.07433], D'Agnolo et al. [1705.08450]

Different mass-coupling relation?

WIMPless miracle, coannihilation, forbidden dark matter

e.g Feng & Kumar [0905.3039], Griest & Seckel 1991, D'Agnolo & Ruderman [1505.07107]

Thinking of a minimal setup:

BSM (heavy) DM + SM mediator

+ let's keep DM thermal (we like it)

How heavy can DM be?

Alternative dark matter candidates?

Light: m < few GeV

Direct detection

e.g. Essig et al. [1509.01598], [1907.07682] Colliders + beyond

e.g. Belle II physics Book [1808.10567], Physics Beyond Colliders at CERN [1901.09966]

Heavy: m > few TeV

Telescopes

e.g. Antares: [1912.05296], CTA: Rinchiuso et al. [2008.00692], Hess: Rinchiuso et al. [1908.04317], IceCube: Kachelriess et al. [1805.04500]

Non-thermal

Freeze-in

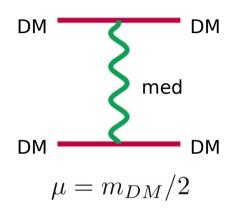
e.g. Hall et al. [0911.1120], Bélanger et al. [1811.05478]

Early kinetic decoupling, coscattering

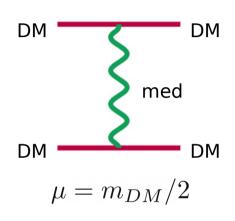
e.g Binder et al. [1706.07433], D'Agnolo et al. [1705.08450]

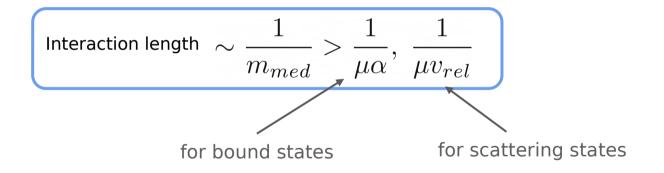
Different mass-coupling relation?

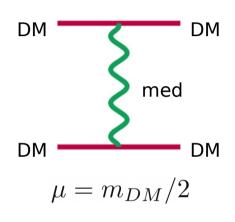
WIMPless miracle, coannihilation, forbidden dark matter

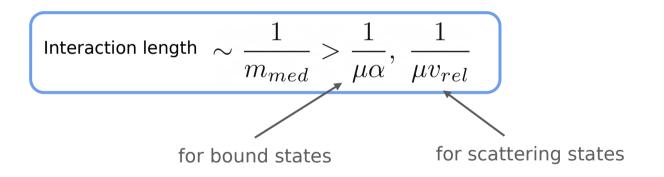

e.g Feng & Kumar [0905.3039], Griest & Seckel 1991, D'Agnolo & Ruderman [1505.07107]

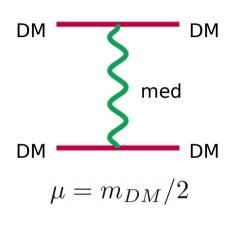
Thinking of a minimal setup:

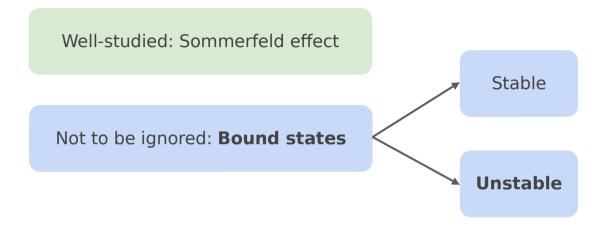

BSM (heavy) DM + SM mediator

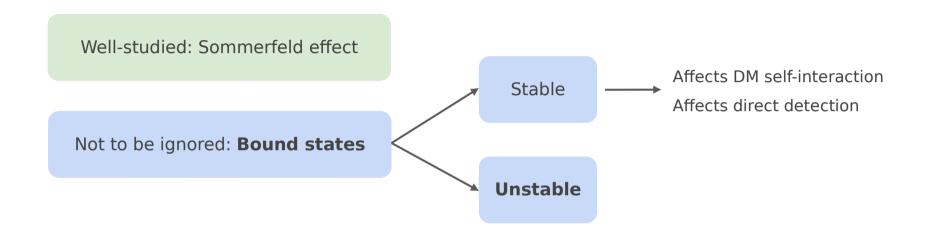

+ let's keep DM thermal (we like it)

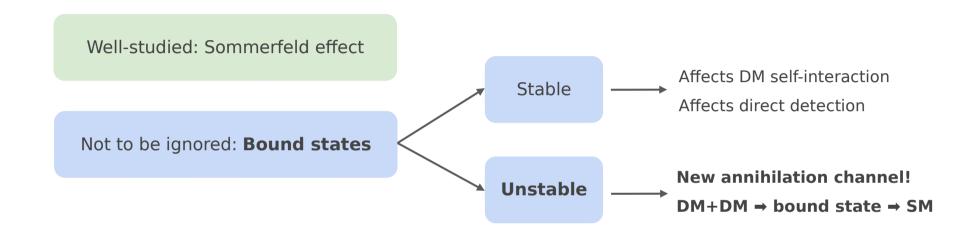

How heavy can DM be?

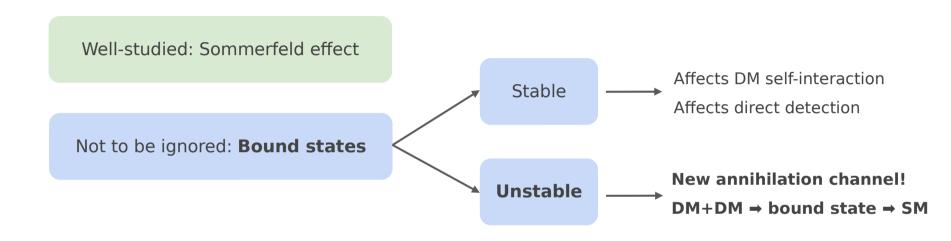


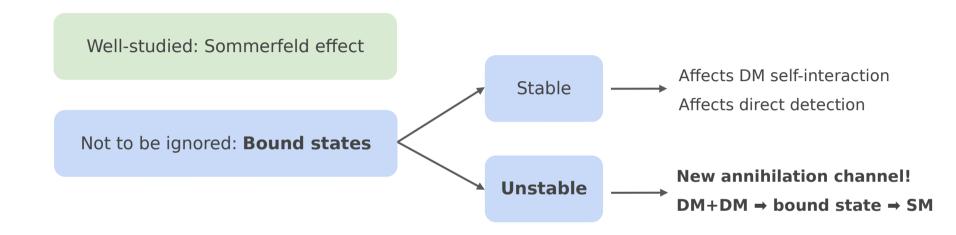

Interaction length
$$\sim \frac{1}{m_{med}} > \frac{1}{\mu \alpha}, \; \frac{1}{\mu v_{rel}}$$

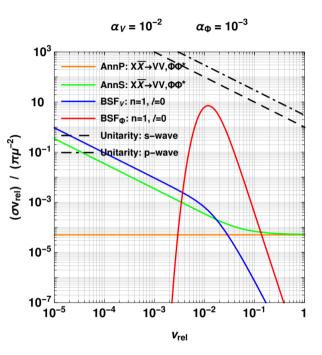



Typically, viable scenarios have dark matter at multi-GeV or TeV scale

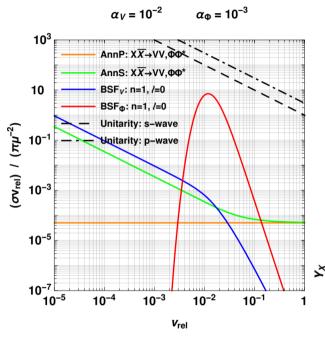

Well-studied: Sommerfeld effect


Well-studied: Sommerfeld effect

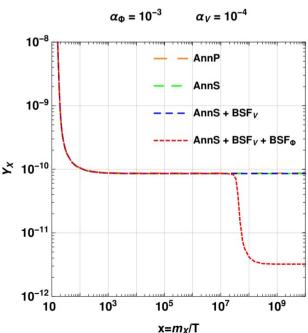

Not to be ignored: **Bound states**



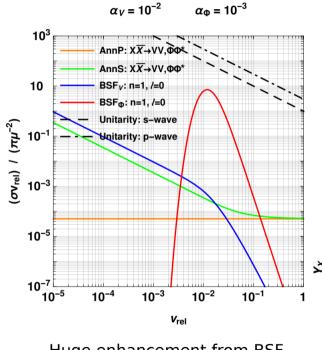
Affect relic density predictions Change mass-coupling relation


Affect Indirect detection

Dramatic example: scalar mediator

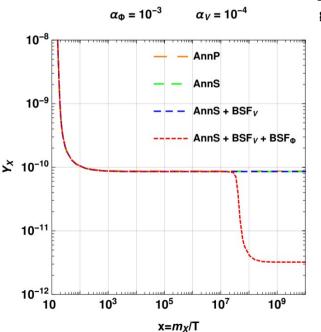

Huge enhancement from BSF_Φ

Dramatic example: scalar mediator

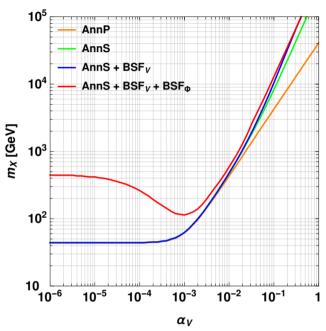


Huge enhancement from BSF_o

Relic density predictions change by orders of magnitude!



Dramatic example: scalar mediator



Huge enhancement from BSF_o

Relic density predictions change by orders of magnitude!

 $\alpha_{\Phi} = 10^{-3}$

Changes all pheno predictions (DD, ID, colliders..)!

+ Higgs portal models, Oncala, Petraki [2101.08666/7] Why to care about bound states?

Bound states appear in many simple (and familiar) DM models

e.g. dark U(1), coannihilation in dark SU(3) sectors, scalar mediators

- Bound states appear in many simple (and familiar) DM models
 e.g. dark U(1), coannihilation in dark SU(3) sectors, scalar mediators
- They significantly affect relic density predictions

- Bound states appear in many simple (and familiar) DM models
 e.g. dark U(1), coannihilation in dark SU(3) sectors, scalar mediators
- They significantly affect relic density predictions
- Consequently, they change DM pheno today

- Bound states appear in many simple (and familiar) DM models
 e.g. dark U(1), coannihilation in dark SU(3) sectors, scalar mediators
- They significantly affect relic density predictions
- Consequently, they change DM pheno today

Need to be included in many DM calculations and public codes

- Bound states appear in many simple (and familiar) DM models
 e.g. dark U(1), coannihilation in dark SU(3) sectors, scalar mediators
- They significantly affect relic density predictions
- Consequently, they change DM pheno today

Need to be included in many DM calculations and public codes

Need a general formalism to account for bound states

In general, to incorporate bound states in DM thermal decoupling, one needs to solve a set of coupled Boltzmann equations for the bound (Y_B) and unbound (Y_i) species.

In general, to incorporate bound states in DM thermal decoupling, one needs to solve a set of coupled Boltzmann equations for the bound (Y_B) and unbound (Y_i) species.

$$\begin{split} \frac{dY_{j}}{dx} &= -\frac{\lambda}{x^{2}} \sum_{i} \langle \sigma_{ji}^{\mathrm{ann}} v_{\mathrm{rel}} \rangle \left(Y_{j} Y_{i} - Y_{j}^{\mathrm{eq}} Y_{i}^{\mathrm{eq}} \right) - \frac{\lambda}{x^{2}} \sum_{i} \sum_{\mathcal{B}} \langle \sigma_{ji \to \mathcal{B}}^{\mathrm{BSF}} v_{\mathrm{rel}} \rangle \left(Y_{j} Y_{i} - \frac{Y_{\mathcal{B}}}{Y_{\mathcal{B}}^{\mathrm{eq}}} Y_{j}^{\mathrm{eq}} Y_{i}^{\mathrm{eq}} \right) \\ &- \Lambda \, x \sum_{i} \langle \Gamma_{j \to i} \rangle \left(Y_{j} - \frac{Y_{i}}{Y_{i}^{\mathrm{eq}}} Y_{j}^{\mathrm{eq}} \right) \\ \frac{dY_{\mathcal{B}}}{dx} &= -\Lambda \, x \left[\langle \Gamma_{\mathcal{B}}^{\mathrm{dec}} \rangle \left(Y_{\mathcal{B}} - Y_{\mathcal{B}}^{\mathrm{eq}} \right) + \sum_{i,j} \langle \Gamma_{\mathcal{B} \to ij}^{\mathrm{ion}} \rangle \left(Y_{\mathcal{B}} - \frac{Y_{i} Y_{j}}{Y_{i}^{\mathrm{eq}}} Y_{\mathcal{B}}^{\mathrm{eq}} + \sum_{\mathcal{B}' \neq \mathcal{B}} \langle \Gamma_{\mathcal{B} \to \mathcal{B}'}^{\mathrm{trans}} \rangle \left(Y_{\mathcal{B}} - \frac{Y_{\mathcal{B}'}}{Y_{\mathcal{B}'}^{\mathrm{eq}}} Y_{\mathcal{B}}^{\mathrm{eq}} \right) \right] \end{split}$$

$$\text{with} \quad \lambda \equiv \sqrt{\frac{\pi}{45}} m_{\rm Pl} \, m \, g_*^{1/2} \qquad \text{and} \quad \Lambda \equiv \frac{\lambda}{s \, x^3} = \sqrt{\frac{45}{4\pi^3}} \frac{m_{\rm Pl}}{m^2} \frac{g_*^{1/2}}{g_{*S}}$$

In general, to incorporate bound states in DM thermal decoupling, one needs to solve a set of coupled Boltzmann equations for the bound (Y_B) and unbound (Y_i) species.

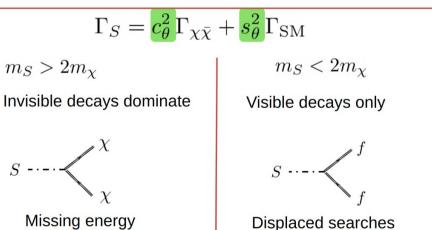
$$\begin{split} \frac{dY_{j}}{dx} &= -\frac{\lambda}{x^{2}} \sum_{i} \left\langle \sigma_{ji}^{\mathrm{ann}} v_{\mathrm{rel}} \right\rangle \left(Y_{j} Y_{i} - Y_{j}^{\mathrm{eq}} Y_{i}^{\mathrm{eq}} \right) - \frac{\lambda}{x^{2}} \sum_{i} \sum_{\mathcal{B}} \left\langle \sigma_{ji \to \mathcal{B}}^{\mathrm{BSF}} v_{\mathrm{rel}} \right\rangle \left(Y_{j} Y_{i} - \frac{Y_{\mathcal{B}}}{Y_{\mathcal{B}}^{\mathrm{eq}}} Y_{j}^{\mathrm{eq}} Y_{i}^{\mathrm{eq}} \right) \\ &- \Lambda x \sum_{i} \left\langle \Gamma_{j \to i} \right\rangle \left(Y_{j} - \frac{Y_{i}}{Y_{i}^{\mathrm{eq}}} Y_{j}^{\mathrm{eq}} \right) \\ \frac{dY_{\mathcal{B}}}{dx} &= -\Lambda x \left[\left\langle \Gamma_{\mathcal{B}}^{\mathrm{dec}} \right\rangle \left(Y_{\mathcal{B}} - Y_{\mathcal{B}}^{\mathrm{eq}} \right) + \sum_{i,j} \left\langle \Gamma_{\mathcal{B} \to ij}^{\mathrm{ion}} \right\rangle \left(Y_{\mathcal{B}} - \frac{Y_{i} Y_{j}}{Y_{i}^{\mathrm{eq}} Y_{j}^{\mathrm{eq}}} Y_{\mathcal{B}}^{\mathrm{eq}} + \sum_{\mathcal{B}' \neq \mathcal{B}} \left\langle \Gamma_{\mathcal{B} \to \mathcal{B}'}^{\mathrm{trans}} \right\rangle \left(Y_{\mathcal{B}} - \frac{Y_{\mathcal{B}'}}{Y_{\mathcal{B}'}^{\mathrm{eq}}} Y_{\mathcal{B}}^{\mathrm{eq}} \right) \right] \end{split}$$

$$\text{with} \quad \lambda \equiv \sqrt{\frac{\pi}{45}} m_{\rm Pl} \, m \, g_*^{1/2} \qquad \text{and} \quad \Lambda \equiv \frac{\lambda}{s \, x^3} = \sqrt{\frac{45}{4\pi^3}} \frac{m_{\rm Pl}}{m^2} \frac{g_*^{1/2}}{g_{*S}}$$

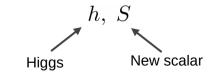
However, in most models, this system can be simplified to **one effective Boltzmann equation**

Conclusions

- Strong direct detection constraints point us to **less conventional** dark matter scenarios
- Viable scenarios are **very different** at different energy scales
- Well-known models have features that dramatically affect dark matter phenomenology, and therefore change the search strategies (e.g. existence of long-lived particles or bound states)
- At MeV-GeV scale, displaced and invisible searches at electron colliders are very promising
- Displaced and invisible searches are **complementary**. They both require attention when exploring the parameter space of a feebly-interacting model
- **Bound states are a whole new avenue** in dark matter community. We are still developing the framework to understand them but they will definitely change many of our predictions

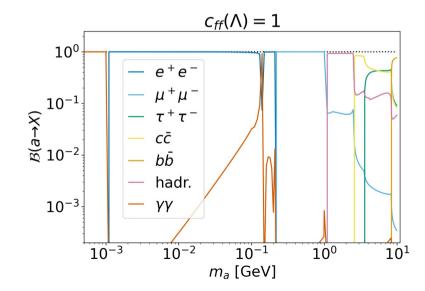

Backup

Dark scalar model

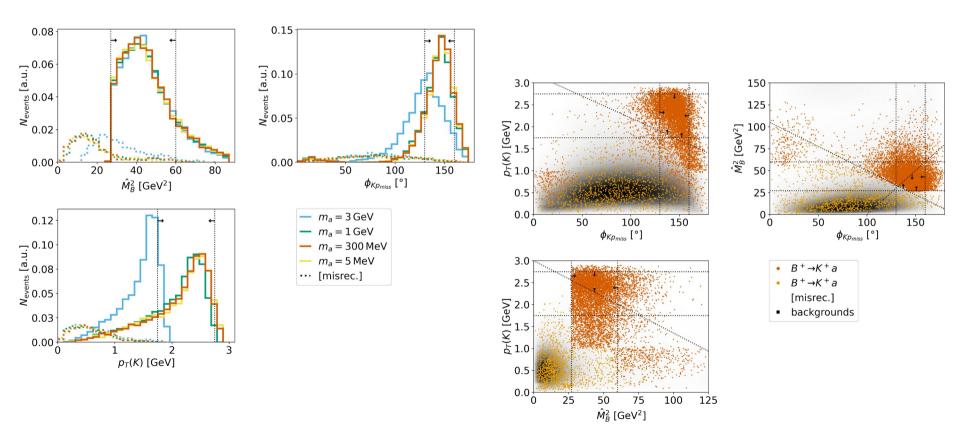

$$\mathcal{L} = -\frac{1}{2}m_{\phi}^2\phi^2 - \mu |H|^2\phi - y_{\chi}\bar{\chi}\chi\phi - \frac{1}{2}m_{\chi}\bar{\chi}\chi$$

Can play role of DM candidate

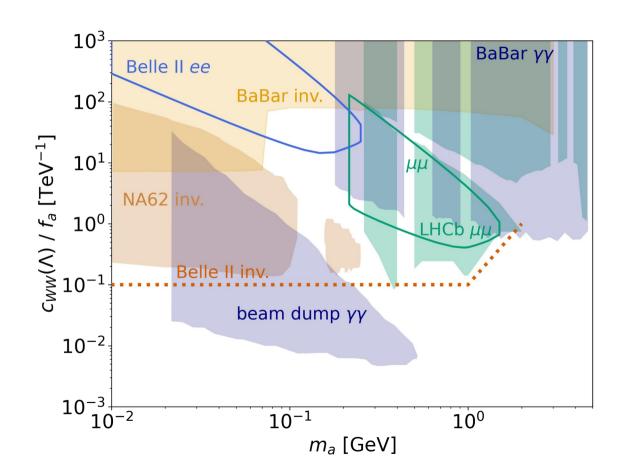
Search regions



ALP model


$$\mathcal{L}_{\text{eff}}(\mu > \mu_w) = \sum_{f} \frac{c_{ff}(\mu)}{2} \frac{\partial^{\mu} a}{f_a} (\bar{f} \gamma_{\mu} \gamma_5 f) + c_{WW}(\mu) \frac{a}{f_a} \frac{\alpha_2}{4\pi} W_{\mu\nu}^A \widetilde{W}^{\mu\nu,A}$$

$$\mathcal{B}(B^+ \to K^+ a) = 0.03 \left(\frac{c_{ff}(\Lambda)}{f_a \, [\text{TeV}]} + 0.0032 \, \frac{c_{WW}(\Lambda)}{f_a \, [\text{TeV}]} \right)^2 \frac{f_0^2(m_a^2)}{f_0^2(0)} \frac{\lambda^{1/2}(m_B^2, m_K^2, m_a^2)}{m_B^2 - m_K^2}$$


$$\Gamma_{a \to \ell \bar{\ell}} = 2\pi m_a \frac{\left|C_{\ell \ell}^{\text{eff}}(m_a)\right|^2 m_{\ell}^2}{\Lambda^2} \sqrt{1 - \frac{4m_{\ell}^2}{m_a^2}} \,.$$

ALP invisible searches: kinematics and selection criteria

ALP model: projections for photon coupling only

Coupled system of Boltzmann equations

$$\frac{dY_{j}}{dx} = -\frac{\lambda}{x^{2}} \sum_{i} \langle \sigma_{ji}^{\text{ann}} v_{\text{rel}} \rangle \left(Y_{j} Y_{i} - Y_{j}^{\text{eq}} Y_{i}^{\text{eq}} \right) - \frac{\lambda}{x^{2}} \sum_{i} \sum_{\mathcal{B}} \langle \sigma_{ji \to \mathcal{B}}^{\text{BSF}} v_{\text{rel}} \rangle \left(Y_{j} Y_{i} - \frac{Y_{\mathcal{B}}}{Y_{\mathcal{B}}^{\text{eq}}} Y_{j}^{\text{eq}} Y_{i}^{\text{eq}} \right) - \Lambda x \sum_{i} \langle \Gamma_{j \to i} \rangle \left(Y_{j} - \frac{Y_{i}}{Y_{i}^{\text{eq}}} Y_{j}^{\text{eq}} \right)$$

$$\frac{dY_{\mathcal{B}}}{dx} = -\Lambda x \left[\langle \Gamma_{\mathcal{B}}^{\text{dec}} \rangle \left(Y_{\mathcal{B}} - Y_{\mathcal{B}}^{\text{eq}} \right) + \sum_{i,j} \langle \Gamma_{\mathcal{B} \to ij}^{\text{ion}} \rangle \left(Y_{\mathcal{B}} - \frac{Y_{i}Y_{j}}{Y_{i}^{\text{eq}}Y_{j}^{\text{eq}}} Y_{\mathcal{B}}^{\text{eq}} + \sum_{\mathcal{B}' \neq \mathcal{B}} \langle \Gamma_{\mathcal{B} \to \mathcal{B}'}^{\text{trans}} \rangle \left(Y_{\mathcal{B}} - \frac{Y_{\mathcal{B}'}}{Y_{\mathcal{B}'}^{\text{eq}}} Y_{\mathcal{B}}^{\text{eq}} \right) \right]$$

However:

- Assume fast transitions $\Gamma_{i\leftrightarrow j} o Y_i/Y_i^{eq} = w$
- At high temperatures, ionisations are efficient; at low temperatures decays (directly or via transitions) are fast $\to \frac{dY_B}{dx} \simeq 0$

One effective Boltzmann equation

Some definitions:

Total DM yield

$$Y \equiv \sum_{j} Y_{j}$$

Total rates for a given bound state

$$\begin{split} & \langle \Gamma_{\mathcal{B}}^{\text{ion}} \rangle \equiv \sum_{i,j} \langle \Gamma_{\mathcal{B} \to ij}^{\text{ion}} \rangle \\ & \langle \Gamma_{\mathcal{B}}^{\text{trans}} \rangle \equiv \sum_{\mathcal{B}' \neq \mathcal{B}} \langle \Gamma_{\mathcal{B} \to \mathcal{B}'}^{\text{trans}} \rangle \\ & \langle \Gamma_{\mathcal{B}}^{\text{tot}} \rangle \equiv \langle \Gamma_{\mathcal{B}}^{\text{dec}} \rangle + \langle \Gamma_{\mathcal{B}}^{\text{ion}} \rangle + \langle \Gamma_{\mathcal{B}}^{\text{trans}} \rangle \end{split}$$

Matrix notations

$$\Gamma_{\mathcal{B}\mathcal{B}'}^{\text{dec}} \equiv \delta_{\mathcal{B}\mathcal{B}'} \langle \Gamma_{\mathcal{B}}^{\text{dec}} \rangle
\Gamma_{\mathcal{B}\mathcal{B}'}^{\text{ion}} \equiv \delta_{\mathcal{B}\mathcal{B}'} \langle \Gamma_{\mathcal{B}}^{\text{ion}} \rangle
\Gamma_{\mathcal{B}\mathcal{B}'}^{\text{trans}} \equiv \delta_{\mathcal{B}\mathcal{B}'} \langle \Gamma_{\mathcal{B}}^{\text{trans}} \rangle
\Gamma_{\mathcal{B}\mathcal{B}'}^{\text{tot}} \equiv \delta_{\mathcal{B}\mathcal{B}'} \langle \Gamma_{\mathcal{B}}^{\text{tot}} \rangle = \Gamma_{\mathcal{B}\mathcal{B}'}^{\text{dec}} + \Gamma_{\mathcal{B}\mathcal{B}'}^{\text{ion}} + \Gamma_{\mathcal{B}\mathcal{B}'}^{\text{trans}}
\Gamma_{\mathcal{B}\mathcal{B}'} \equiv \langle \Gamma_{\mathcal{B}' \to \mathcal{B}}^{\text{trans}} \rangle$$

$$\frac{dY}{dx} = -\frac{\lambda}{x^2} \langle \sigma^{\text{eff}} v_{\text{rel}} \rangle \left[Y^2 - (Y^{\text{eq}})^2 \right]$$

$$\langle \sigma^{\text{eff}} v_{\text{rel}} \rangle \equiv \sum_{i,j} \frac{g_{i,\text{eff}} g_{j,\text{eff}}}{g_{\text{eff}}^2} \left(\langle \sigma_{ij}^{\text{ann}} v_{\text{rel}} \rangle + \sum_{\mathcal{B}} r_{\mathcal{B}} \langle \sigma_{ij \to \mathcal{B}}^{\text{BSF}} v_{\text{rel}} \rangle \right)$$

$$r_{\mathcal{B}} \equiv \sum_{i,j} \langle \Gamma_{\mathcal{B}'}^{\text{dec}} \rangle \left(\Gamma^{\text{tot}} - \Gamma \right)_{\mathcal{B}'\mathcal{B}}^{-1}$$

Bound state efficiency factor

$$0 \le r_{\mathcal{B}} \le 1$$

Saha ionisation equilibrium for **metastable** bound states

(Algebraic) eq. for bound states + detailed balance + definition of efficiency factor:

$$\frac{n_{\mathcal{B}}}{n_{\mathcal{B}}^{\text{eq}}} = \left(\frac{n_{\text{free}}}{n_{\text{free}}^{\text{eq}}}\right)^2 - \left[\left(\frac{n_{\text{free}}}{n_{\text{free}}^{\text{eq}}}\right)^2 - 1\right] r_{\mathcal{B}}$$

$$\mu_{\mathcal{B}}/T = 2\mu_{\text{free}}/T + \ln\left[1 - (1 - e^{-2\mu_{\text{free}}/T})r_{\mathcal{B}}\right]$$

$$r_{\mathcal{B}} \ll 1$$

$$\mu_{\mathcal{B}} = 2 \; \mu_{free}$$
 (familiar expression)

$$r_{\mathcal{B}} \to 1$$

$$\mu_{\mathcal{B}} = 0$$