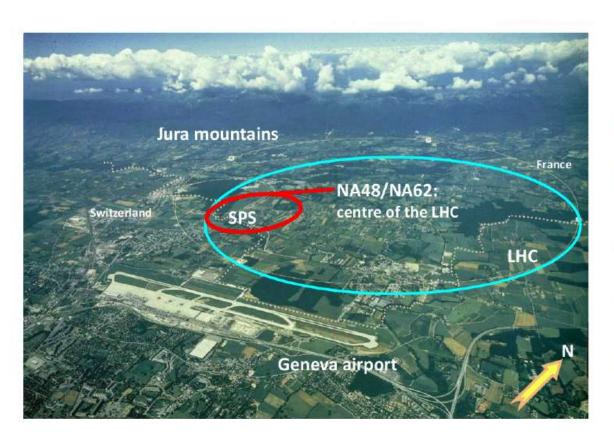
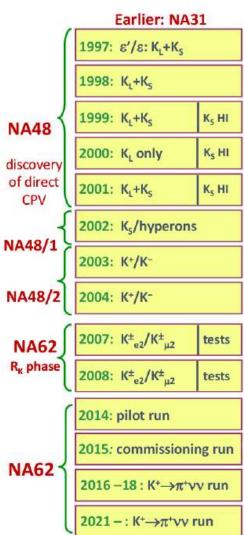
Measurement of the rare $K^+ \to \pi^+ \, \nu \nu$ decay from the NA62 experiment at CERN

R. Fantechi

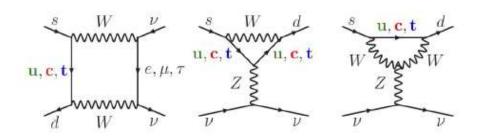

INFN - Sezione di Pisa and CERN on behalf of the NA62 Collaboration

DIS 2022 - Santiago de Compostela May 2nd-6th, 2022


Outline

- The NA62 experiment at CERN
- Study of the $K^+ \rightarrow \pi^+ \nu \nu$ decay
- Search for $K^+ \rightarrow \pi^+ X$
- Prospects and conclusions

Kaon decays at CERN


Kaon decay in flight experiments. NA62: ~200 participants, ~30 institutes

The NA62 experiment

- Main goal
 - Measurement of BR (K $^+$ \rightarrow π^+ $\nu\nu$) with 10% accuracy
- But also a broader physics programme
 - Rare K+ decays
 - LNV/LFV in K+ decays
 - Hidden sector particles
 - Dump mode: MeV-GeV hidden sector
 - Dark photons
 - Heavy Neutral Leptons
 - Axions/Axion-like Particles
 - With parallel high-efficiency trigger masks with a minimal load to the main stream

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$: clean theoretical environment

FCNC loop processes: s->d coupling Highest CKM suppression

Very clean theoretically No hadronic uncertainties Hadronic matrix element related to the precisely measured BR ($K^+ \to \pi^0 e^+ v$)

SM predictions [Buras et al. JHEP 1511 (2015) 33]

$$BR(K^{+} \to \pi^{+} \nu \overline{\nu}) = (8.39 \pm 0.30) \cdot 10^{-11} \cdot \left(\frac{V_{cb}}{0.0407}\right)^{2.8} \cdot \left(\frac{\gamma}{73.2^{0}}\right)^{0.74} = (0.84 \pm 0.10) \cdot 10^{-10}$$

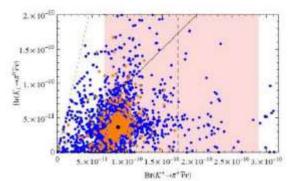
$$BR(K^{0} \to \pi^{0} \nu \overline{\nu}) = (3.36 \pm 0.05) \cdot 10^{-11} \cdot \left(\frac{V_{ub}}{0.00388}\right)^{2} \cdot \left(\frac{V_{cb}}{0.0407}\right)^{2} \cdot \left(\frac{\sin \gamma}{\sin 73.2^{0}}\right)^{0.74} = (0.34 \pm 0.06) \cdot 10^{-10}$$

 $K \rightarrow \pi \nu \nu$ are the most sensitive probes to NP models among B and K decays

The combined measurement of K^+ and K_L modes could shed light on the flavour structure of NP ($\Delta S=2$ / $\Delta S=1$ correlation)

$K \rightarrow \pi \nu \overline{\nu} NP$ sensitivity

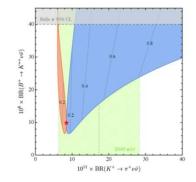
Simplified Z, Z' models


A. J. Buras, D. Buttazzo, R. Knegiens, JHEP 1511 (2015) 166

More specific NP models

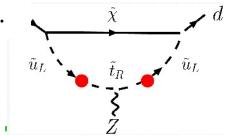
Littlest Higgs with T-parity

M. Blanke, A.J. Buras, S. Recksiegel, EPJ C76 (2016) 182 Custodial Randall-Sundrum



LFU Violation Isidori et al, EPJC (2017) 77

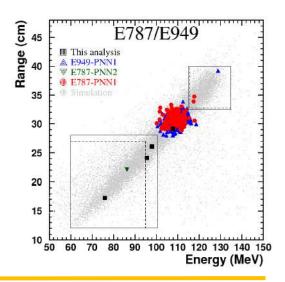
 $B(K^+ \to \pi^+ \bar{\nu} \bar{\nu}) [10^{-11}]$


Z' model $M_{Z^+} = 500 \text{ TeV}$

Started to be probed at LHC, small effects in B physics.

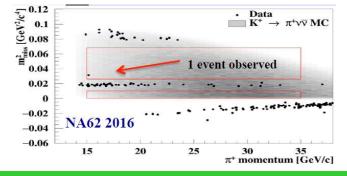
Best probe of MSSM non-MFV [JHEP 0608 (2006) 064]

- E.g. non-MFV in up-squarks trilinear terms
- Still not excluded by the recent LHCb data.

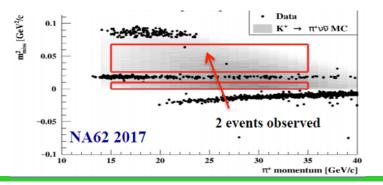

Previous status of $K^+ \to \pi^+ \nu \overline{\nu}$

E787/E949 @Brookhaven: 7 candidates $K^+ \to \pi^+ \nu \nu$ 2 experiments, stopped kaon technique

Separated K⁺ beam (710 MeV/c, 1.6MHz) PID: range (entire $\pi + \rightarrow \mu + \rightarrow e +$ decay chain) Hermetic photon veto system


$$BR(K^+ \to \pi^+ \nu \overline{\nu}) = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$$

Phys. Rev. D77,052003 (2008), Phys. Rev. D79,092004 (2009)



NA62, result from 2016+2017 data:

$$BR(K^+ \to \pi^+ \nu \overline{\nu}) < 1.78 \times 10^{-10} (90\% CL)$$

Phys. Lett. B 791 (2019) 156 JHEP 11 (2020) 042

NA62 goals and challenges

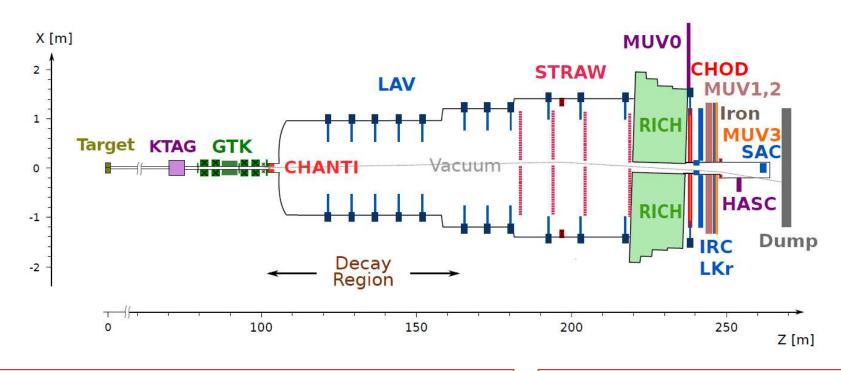
- Measurement of the $K^+ \to \pi^+ \nu \nu$ branching ratio
 - This requires at least 10¹³ Kaon decays
 - In-flight decay technique
 - 75 GeV/c beam helps in background rejection
 - Event selection with P_x<35 GeV/c (45 GeV/c in region 2 for 2018 data)
 - i.e. $K_{\pi 2}$ decays have around more than ~40 GeV of electromagnetic energy
 - O(1012) rejection factor of common K decays

Good tracking devices

Accurate measurement of the kaon momentum Accurate measurement of the pion momentum Missing mass cut: $O(10^5)$ rejection on $K_{\mu 2}$, $O(10^4)$ on $K_{\pi 2}$

Veto detectors

Photons: to reduce the background by a factor of 10^8 Muons: add a rejection factor of $O(10^5)$


Particle identification

Identify kaons in the beam Identify positrons Additional π/μ rejection [O(10²)]

Precise sub-ns timing

Kaon-pion time association To reduce pileup

The NA62 detector

Beam

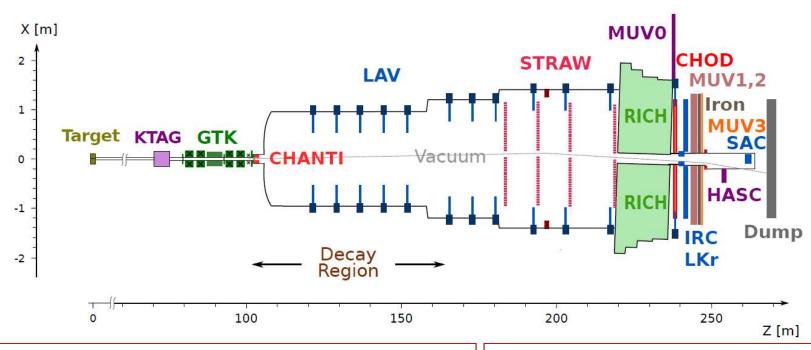
Momentum 75 GeV/c, 1% bite

Divergence (RMS) $100 \mu rad$ Transverse Size $60 \times 30 mm^2$

Composition K+ 6%, π + 70%, p 24%

Nominal Intensity $33 \times 10^{11} \text{ ppp} (750 \text{ MHz at } GTK3)$

Fiducial region


60 m decay region 10-6 mbar vacuum

Downstream rate ~ 10 MHz

Detector description:

JINST 12 P05025 (2017), arxiv:1703.08501

The NA62 detector

Upstream detectors (K⁺)

KTAG GTK CHANTI Differential Cherenkov counter for K+ ID Silicon pixel beam tracker

Veto for inelastic beam-GTK3 interactions

Downstream detectors (π^{+})

STRAW CHOD

LKr/MUV1/MUV2 RICH

LAV/LKr/IRC/SAC Photon veto MUV3

Track spectrometer Scintillator hodoscopes

Calorimetric system Cherenkov for $\pi/\mu/e$ ID

Muon veto

NA62 runs

2014: Pilot run

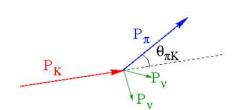
2015: Commissioning run

2016: Commissioning and physics run

Result published:

Phys. Lett. B 791 (2019) 156

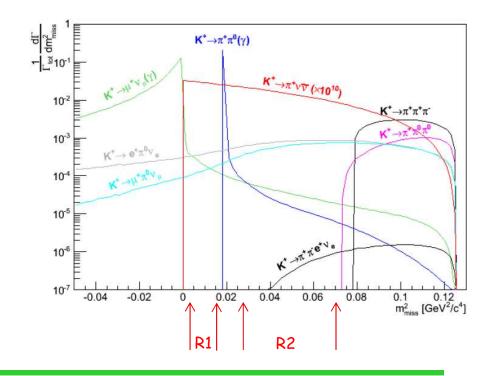
2017: 160 days of data taking


Result published: JHEP 11 (2020) 042

2018: 217 days of data taking

Result published: JHEP 06 (2021) 093

K⁺ decay in-flight


- Signature: one incident kaon, 1 charged output track
- Missing mass distributions: $m_{\text{miss}}^2 = (P_K P_{\text{track(hyp}} + p_{\text{track(hyp}}))^2$
- \bullet Define two regions in m^2_{miss} to accept candidate events
- 65 m long decay fiducial region, 15 < $P\pi$ < 35 GeV/c
- Particle ID (Cherenkov detectors, calorimeters)
- Photon Veto

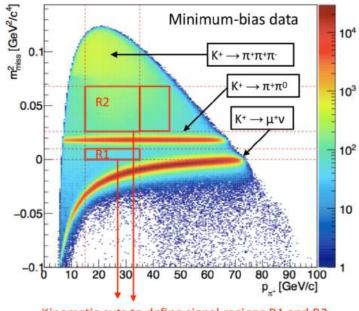
•Backgrounds:

- Accidental beam activity
- •K+ decay modes:

$$\begin{array}{ll} \text{K}^{+} \rightarrow \pi^{+} \pi^{0} \; (\gamma) & \text{Br = 0.2067} \\ \text{K}^{+} \rightarrow \mu^{+} \nu \; (\gamma) & \text{Br = 0.6356} \\ \text{K}^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-} & \text{Br = 0.0558} \\ \text{K}^{+} \rightarrow \pi^{+} \pi^{-} e^{+} \nu & \text{Br = 4.25*10-5} \end{array}$$

Data analysis

Analysis steps


- Selection
- Determination of single event sensitivity (SES)
- Estimation and validation of the expected background
- Un-blinding of the signal regions

Selection

- K⁺ decay into one charged particle
- π^+ identification
- Photon rejection
- Multi track rejection

Performances

- GTK-KTAG-RICH timing: O(100 ps)
- π ⁺ ID: $ε_{\mu}$ = 10⁻⁸; $ε_{\pi}$ ~64%
- π^0 rejection $\varepsilon_{\pi 0}$ = ~1.4 ·10⁻⁸
- $\sigma(m_{miss}^2) \sim 10^{-3} \text{ GeV}^2/c^4$

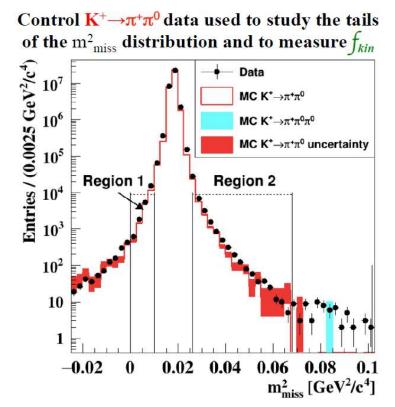
Single Event Sensitivity (SES)

- Determine Kaon flux from $K^+ \to \pi^+ \pi^0$ selected with control trigger (downscale 400)
- Use the same πvv selection, but without photon and multiplicity rejection and with missing mass cut modified
- Average random veto efficiency ε_{RV} = (66±1)%
- Average trigger efficiency $\varepsilon_{\text{trig}} = (88\pm4)\%$
- Both efficiencies function of the instantaneous beam intensity, measured from the sidebands of the time distributions in the GTK
- All computations done in momentum bins and then summed

$$N_{\pi\nu\nu}^{\exp} = N_{\pi\pi} \varepsilon_{RV} \varepsilon_{trig} \frac{A_{\pi\nu\nu}}{A_{\pi\pi}} \frac{BR(\pi\nu\nu)}{BR(\pi\pi)} \qquad SES = \frac{BR(\pi\nu\nu)}{N_{\pi\nu\nu}^{\exp}}$$

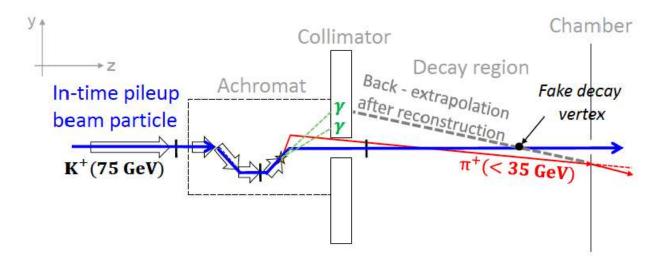
Single Event Sensitivity (SES)

Integrated over beam intensity and π^+ momentum


$$SES = (0.111 \pm 0.007) \times 10^{-10}$$
 $N_{\pi\nu\nu}^{\text{exp}} = 7.58 \pm 0.40_{\text{syst}} \pm 0.75_{\text{ext}}$

External error from SM prediction for BR = $(0.84 \pm 0.10)*10^{-10}$

Error budget			
Source	Uncertainty		
Trigger efficiency	5%		
MC Acceptance	3.5%		
Random veto efficiency	2%		
Instantaneous intensity	0.7%		
Normalization background	0.7%		
Total	6.5%		


Background suppression

Data driven estimation $K^+ \rightarrow \pi^+ \pi^0$ (γ), $K^+ \rightarrow \mu^+ \nu$ and $K^+ \rightarrow \pi^+ \pi^+$: $N_{\pi\pi}^{exp}(region) = N(\pi^{+}\pi^{0})f^{kin}(region)$ Data in $\pi^+\pi^0$ Fraction of $\pi^+\pi^0$ Expected $(\mu^+ \nu)$ region, events in the (µ⁺v) in signal πvv selection region measured signal region, (including π^0 πvv selection on control data rejection) $N_{\mu\nu}^{exp}(region) = N(\mu^+\nu)f^{kin}(region)$ $K^+ \rightarrow \pi^+ \pi^+ \pi^-$: Same procedure, but kinematic tails estimated with MC

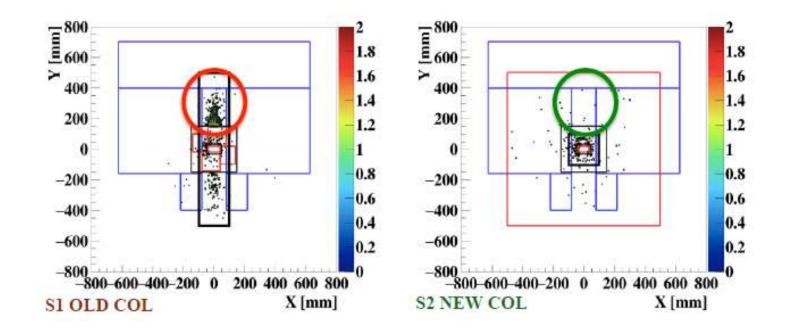
 $K^+ \rightarrow \pi^+ \pi^- e^+ \nu e$, $K^+ \rightarrow \pi^+ \gamma \gamma$, $K^+ \rightarrow \pi^0 \ell^+ \nu$: evaluation only with MC simulations normalized to the SES

Upstream background

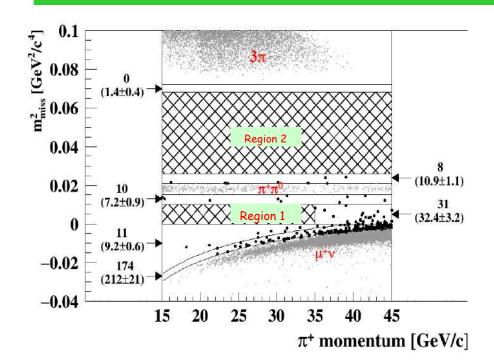
K⁺ decay/interaction in the achromat Photons blocked by the collimators

 π^+ detected in the straw, but it has scattered

Back extrapolation gives a fake vertex in the fiducial zone with an in-time pileup $K^{\scriptscriptstyle +}$


Use inverted K- π matching to counts event from data

Estimation of the probability of occurrence from data/MC

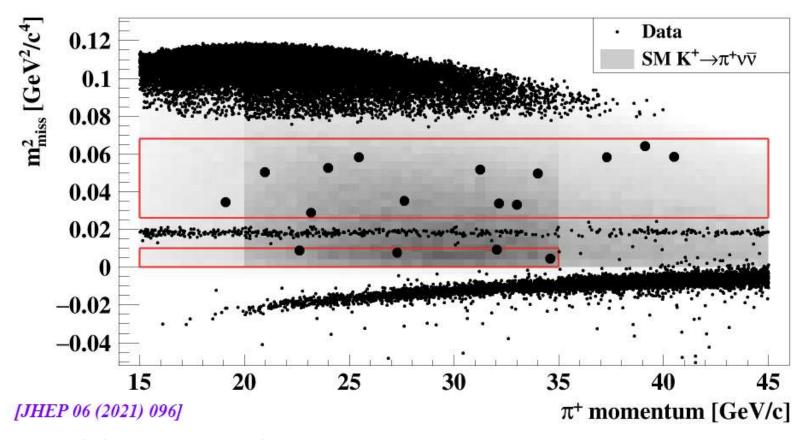

Upstream background

In 2018 a new collimator was installed to help reducing upstream background

Below track extrapolation at collimator in an enriched sample of upstream events

Background evaluation

Estimation of the background using data Validation in 6 control regions with blind analysis


After unmasking control regions good agreement between expected and observed events

Background estimates summed over Region 1 and Region 2

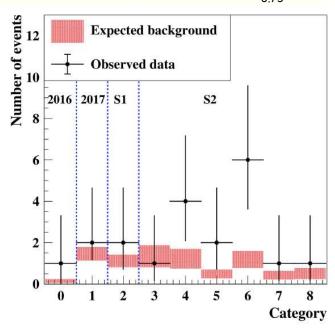
Background	Subset S1	Subset S2
$\pi^{+}\pi^{0}$	0.23 ± 0.02	0.52 ± 0.05
$\mu^+\nu$	0.19 ± 0.06	0.45 ± 0.06
$\pi^+\pi^-e^+\nu$	0.10 ± 0.03	0.41 ± 0.10
$\pi^+\pi^+\pi^-$	0.05 ± 0.02	0.17 ± 0.08
$\pi^+\gamma\gamma$	< 0.01	< 0.01
$\pi^0 l^+ \nu$	< 0.001	< 0.001
Upstream	$0.54^{+0.39}_{-0.21}$	$2.76^{+0.90}_{-0.70}$
Total	$1.11^{+0.40}_{-0.22}$	$4.31^{+0.91}_{-0.72}$

Total background = $5.42^{+0.99}_{-0.75}$

Opening the box

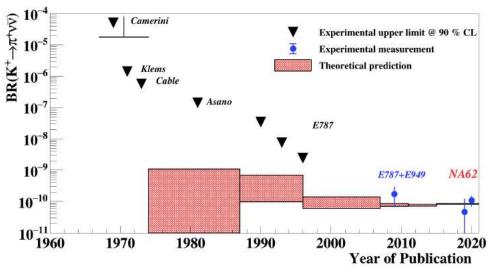
17 candidates observed

 7.58 ± 0.85 SM signal events expected with a background of $5.42^{+0.99}_{-0.75}$ events


$K^+ \rightarrow \pi^+ \nu \nu$ 2016+2017+2018 combined result

	2016	2017	2018
Observed candidates	1	2	17
Single event sensitivity	$(3.15 \pm 0.24) \cdot 10^{-10}$	$(3.89 \pm 0.21) \cdot 10^{-11}$	$(1.11 \pm 0.07) \cdot 10^{-11}$
Expected SM signal	0.267 ± 0.038	2.16 ± 0.29	7.58 ± 0.85
Expected background	0.152 ± 0.090	1.46 ± 0.33	5.42 ^{+0.99} _{-0.75}

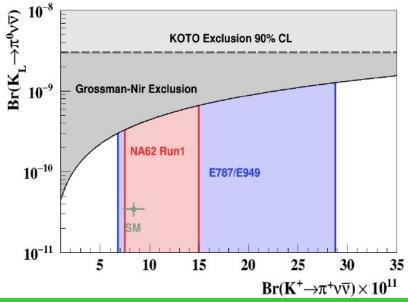
20 events observed in signal regions $P(bkg only) = 3.4*10^{-4}$ 3.4 σ significance


9 categories: 2016, 2017, 2018 oldcol (S1) and 6 for 2018 newcol (S2)

Maximum log-likelihood fit using signal and background expectations in each category

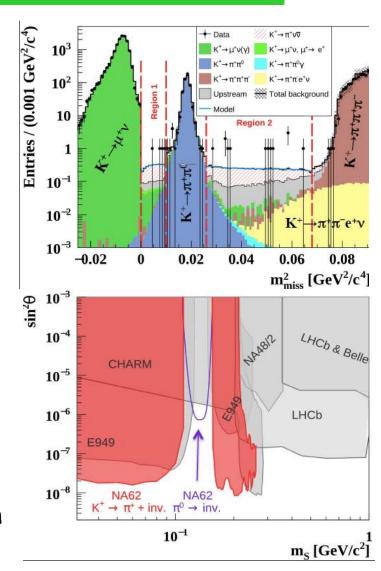
$$BR(K^+ \to \pi^+ \nu \overline{\nu}) = (10.6^{+4.0}_{-3.4}|_{stat} \pm 0.9_{syst}) \times 10^{-11} (68\% CL)$$

The result


Most precise measurement of the $K^+ \to \pi^+ \nu \nu$ decay rate

Strongest evidence so far (3.4σ) for its existence

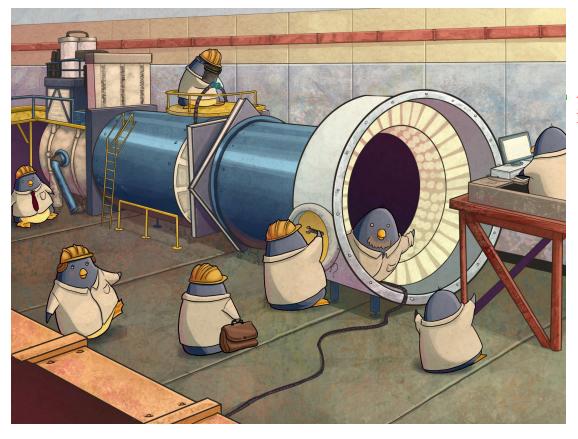
Part of parameter space already ruled out


Exclusion of large BR($K^+ \rightarrow \pi^+ vv$) deviations from SM excluded

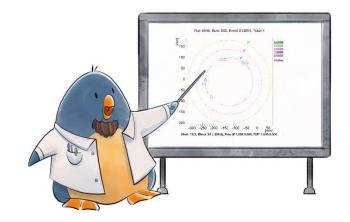
Grossman-Nir limit: BR($K_L \rightarrow \pi^0 \nu \nu$) < 4.3 × BR($K + \rightarrow \pi^+ \nu \nu$)

$K^+ \rightarrow \pi^+ X$, X invisible

- Search for feebly interacting particles in several models
 - Dark scalar mixing with Higgs boson
 - Scalars, like Alps, QCD axion, axiflavon
- Use the background shapes of πvv analysis: consider as SM background
- Peak search using the m_{miss}^2 observable for M_X in the 0-260 MeV/c² range
- Improvements on previous limits over most of the M_{\times} range
- 90% UL on BR(K+ $\to \pi^+$ X) in (10⁻¹¹-10⁻¹⁰)
- Exclusion limits for dark scalars
 - Production and decay driven by mixing with Higgs
 - Assuming X decays only to visible SM particles, then lifetime inversely proportional to the mixing
- Stringent constraints on the allowed region in the $(M_X, \sin^2\theta)$ plane



Conclusions


- The 2016-2017-2018 NA62 combined result for K+ $\to \pi^+ \, \nu \nu$ has been presented
 - 20 events found

$$BR(K^+ \to \pi^+ \nu \overline{\nu}) = (10.6^{+4.0}_{-3.4}|_{stat} \pm 0.9_{syst}) \times 10^{-11} (68\% CL)$$

- The experimental setup has been updated for the next data taking (2021-2025)
 - Data taken in 2021, 2022 run just started
 - New veto counter to further reduce upstream background
 - Upstream scintillator plane to help in reducing muon background in dump mode
 - Second HASC module to improve π^0 and 3π backgrounds
- Search for $K^+ \to \pi^+ X$, X invisible
 - Improvement on the upper limit for the branching ratio
 - Stringent constraints on the allowed region in the $(M_X, \sin^2\theta)$ plane

Artist's view of the past installation activity...

Thank you!

... and of the current analysis work...