

Multiboson production in CMS

Alberto Mecca (University and INFN Torino) on behalf of the CMS Collaboration

Deep Inelastic Scattering 2022 - Santiago de Compostela 3 May 2022

Multiboson production in CMS

- Many CMS analyses targeting multiboson final states
- Rare processes, high energies
- Di- and triboson production allow probing the EW symmetry breaking mechanism, in parallel to the study of the Higgs boson
- Triple and quartic gauge couplings are sensitive to BSM physics
- Limits on new operators, often in the Effective Field Theories framework or in terms of anomalous quartic couplings
- Diboson production is in the precision regime
- Triboson production measured in increasingly more channels
- I will discuss analyses targeting inclusive diboson and triboson production, since Vector Boson Scattering is the focus of another talk
- Measurement of the fiducial cross section
- Produced mainly via qq t- and u-channel ($\sim 90 \%$) and $\mathrm{gg} \rightarrow$ loop (10 \%)
- No tree-level contribution from TGC in SM \rightarrow probe aTGC
- Overall a very clean channel
- Main background: nonprompt leptons \rightarrow from data CRs
- Rare backgrounds (from MC): ttZ, VVV
- Total cross section
- Compare different MC generator predictions

$$
\begin{aligned}
& \sigma_{\text {fid }}=40.5 \pm 0.7 \text { (stat) } \pm 1.1 \text { (syst) } \pm 0.7 \text { (lumi) } \\
& \sigma_{\text {tot }}=17.4 \pm 0.3 \text { (stat) } \pm 0.5 \text { (syst) } \pm 0.4 \text { (theo) } \pm 0.3 \text { (lumi) }
\end{aligned}
$$

Alberto Mecca - DIS2022

$Z Z \rightarrow 4 \ell(\ell=e, \mu)$ - results

- Differential cross sections for $\mathrm{m}_{\mathrm{zz}},{ }^{\mathrm{p}}{ }^{l}, \mathrm{p}_{\mathrm{T}}{ }^{\mathrm{Z}}, \mathrm{p}_{\mathrm{T}}{ }^{\mathrm{zz}}, \Delta \varphi\left(\mathrm{Z}_{1}, \mathrm{Z}_{2}\right), \Delta \mathrm{R}\left(\mathrm{Z}_{1}, \mathrm{Z}_{2}\right)$
- Background correction and detector response unfolded with MC

- Limits from fit to the $m_{z z}$ distribution
- Mostly high energy tail ($\mathrm{m}_{\mathrm{zz}}>1300 \mathrm{GeV}$) affected
- 1D and 2D limits with all other coupling set to 0
- CP-conserving ($f_{4}{ }^{Y}, f_{4}^{Z}$)
- CP-violating $\left(f_{5}{ }^{Y}, f_{5}{ }^{2}\right)$

$\mathrm{WZ} \rightarrow 3 \ell v$

- Produced only by qq' at tree level
- Sensitive to the WWZ TGC and to charge asymmetry $\longrightarrow A_{\mathrm{WZ}}^{+}=\frac{\sigma_{\text {fid }}\left(\mathrm{pp} \rightarrow \mathrm{W}^{+} \mathrm{Z}\right)}{\sigma_{\text {fid }}\left(\mathrm{pp} \rightarrow \mathrm{W}^{-} \mathrm{Z}\right)}$
- Nonprompt leptons: tight-to-loose
- Irreducible bkg: MC shape + normalization in CRs
- ZZ ($\sim 6 \%$ of yield in SR), ttZ and tZq ($\sim 3.2 \%$), X+ץ ($\sim 1.5 \%$)

- Produced via qq annihilation (~95 \%), gg-induced loop (~5
\%) and $\mathrm{H} \rightarrow$ WW (background)
- Signature: 2 isolated leptons and large p_{T} miss
- Main background processes: tt, DY and W+jets
- Lepton $\operatorname{FR}\left(p_{T}, \eta\right)$ is measured in QCD-enriched data
- Applied in CR with 1 passing and 1 failing lepton
- Two analysis: sequential cut $\left(\sigma_{t o t^{\prime}} \sigma_{0 / 1 j^{\prime}}, d \sigma_{0 j} / d p_{t}^{\text {THR }}\right)$ and Random Forest ($\sigma_{\text {tot }}, \mathrm{d} \sigma / \mathrm{dn}_{\mathrm{j}}$)

$\mathrm{W}^{+} \mathrm{W}^{-} \rightarrow \ell^{+} \ell^{-} 2 v$ - results

- Fiducial cross section (SEQ): Two e or μ with $p_{T}>20 \mathrm{GeV}$, $\left|\eta^{l}\right|<2.5, m_{l l}>20 \mathrm{GeV}, \mathrm{p}_{\mathrm{T}}^{l l}>30 \mathrm{GeV}, \mathrm{E}_{\mathrm{T}}^{\text {miss }}>20 \mathrm{GeV}, 0-1$ jets ${ }^{\bullet}$ - Change in 0-jets with p_{T} threshold of vetoed jets
- Total cross section measurement with both analyses
- Differential cross section measurement in $\mathrm{m}_{\ell 又 \ell_{\prime}^{\prime}} \mathrm{p}^{\ell 1}, \mathrm{p}_{\mathrm{T}}^{\ell 2}$,

OWHEG

- Theoretical prediction: $\sigma_{\text {tot }}{ }^{\text {NNLO }}=118.8 \pm 3.6 \mathrm{pb}$
$\sigma_{\text {tot }}^{\text {Seq }}=117.6 \pm 1.4$ (stat) ± 5.5 (syst) ± 1.9 (theo) ± 3.2 (lumi) pb
$=117.6 \pm 6.8 \mathrm{pb}$
- $\sigma_{\text {tot }}^{R F}=131.4 \pm 1.3$ (stat) ± 6.0 (syst) ± 5.1 (theo) ± 3.5 (lumi) pb $=131.4 \pm 8.7 \mathrm{pb}$
Limits on EFT
dim 6 operators q_{q}
$\mathcal{q}^{Z / \gamma}$

 3 May ${ }_{2}^{m_{1}(\mathrm{Gev})}$

$\mathrm{W}^{ \pm} \mathrm{W}^{ \pm} \rightarrow \mathrm{e}^{ \pm} \mu^{ \pm} / \mu^{ \pm} \mu^{ \pm}+2 \nu$ Double Parton Scattering

SMP-21-013

Classifier output in SR
 ~2.2 mb for heavy flavour

CMS Preliminary

- Two hard parton-parton interaction within the same p-p collision
- For single hard scattering $\sigma^{S H S}=\sigma_{\text {PDF }} * \sigma_{\text {parton }} ; \quad \sigma_{\text {PDF }}$ DPS depends on two partons
- A simplified formula can be written: $\sigma_{A B}^{\text {DPS }}=\frac{n}{2} \frac{\sigma_{A} \sigma_{B}}{\sigma_{\text {eff }}} n=1$ if $\mathrm{A}=\mathrm{B}$ - $\sigma_{\text {eff }} \in(15,26) \mathrm{mb}$ if there is a Vector Boson,
- SHS $W^{ \pm} W^{ \pm}$is mainly produced via VBS - suppressed by vetoing additional jets
- Main background: WZ
- Nonprompt leptons
- Also Wy, Zy, ZZ
- 4 regions: $\{++,--\} \times\{e \mu, \mu \mu\}$
- Suppressed with BDTs
- Significance: 3.9б
- $\sigma_{\text {eff }}=12.7_{-2.9}^{+5.0} \mathrm{mb}$

Alberto Mecca - DIS2022

Significance (standard deviations)

	Value	Significance (standard deviations)
$\sigma_{\text {DPSWWW, exp }}^{\text {PYTHIA }}$	1.92 pb	5.4
$\sigma_{\text {DPSTWW, }}^{\text {factorized }}$	0.87 pb	2.5
$\sigma_{\text {DPSWW, obs }}$	$1.41 \pm 0.28($ stat $) \pm 0.28$ (syst) pb	3.9
$\sigma_{\text {eff }}$	$12.7_{-2.9}^{+5.0} \mathrm{mb}$	-

$W \gamma \rightarrow l v \gamma \quad(\ell=e, \mu)$

- $\sigma\left(C_{w w W}\right)=\sigma_{S M}+C_{w w w} \sigma_{i n t}+C_{W w W}{ }^{2} \sigma_{B S M}$
- "Radiation amplitude zero": at LO destructive interference
- SM-EFT have different helicity for $\mathrm{ff} \rightarrow \mathrm{W}_{\mathrm{T}} \mathrm{V}_{\mathrm{T}}$
- Use angular observables: ϕ
- Fiducial differential cross sections
- Constraints on $\boldsymbol{0}_{w w w}$ using $\mathrm{p}_{\mathrm{T}}{ }^{\mathrm{Y}}$ and $\left|\phi_{\mathrm{f}}\right|$

VVV (V = W,Z) - strategy

- $\mathrm{W}^{ \pm} \mathrm{W}^{ \pm} \mathrm{W}^{\mp} \rightarrow \ell^{ \pm} v \quad \ell^{ \pm} v \quad$ qq' $\rightarrow 2 \ell^{ \pm}$
- // $\quad \rightarrow \ell^{ \pm} v \quad \ell^{ \pm} v \quad \ell^{\mp} v \rightarrow 3 \ell^{ \pm}$
- $\mathrm{W}^{ \pm} \mathrm{W}^{ \pm} Z \quad \rightarrow \ell^{ \pm} v \ell^{ \pm} v \ell^{ \pm} \ell^{\mp} \rightarrow 4 \ell^{ \pm}$
- $\mathrm{W}^{ \pm} \mathrm{ZZ} \quad \rightarrow \ell^{ \pm} v \ell^{ \pm} \ell^{\mp} \ell^{ \pm} \ell^{\mp} \rightarrow \mathbf{5} \ell^{ \pm}$

9 regions: $\left\{1 \mathrm{~J}, \mathrm{~m}_{\mathrm{ij}}-\mathrm{in}, \mathrm{m}_{\mathrm{ij}}\right.$-out $\} \times\{\mathrm{ee}, \mathrm{e} \mu, \mu \mu\}$
3 regions: $0,1,2$ SFOS
2 regions: BDT for ttZ, BDT for ZZ

- Z Z Z $\rightarrow \ell^{ \pm} \ell^{\mp} \ell^{ \pm} \ell^{\mp} \ell^{ \pm} \ell^{\mp} \rightarrow \mathbf{6} \ell^{ \pm}$

CMS

$137 \mathrm{fb}^{-1}(13 \mathrm{TeV})$

$$
\begin{aligned}
& \square \text { WWW }\left(\mu_{\text {www }}=1.15_{-0.45}^{+0.45}\right) \\
& \text { WWZ }\left(\mu_{\text {wWZ }}=0.86_{-0.35}^{+0.35}\right) \\
& \text { WZZ }\left(\mu_{\text {WZZ }}=2.24^{+1.9225}\right) \\
& \text { ZZZ }\left(\mu_{7 z 7}=0.0_{-0.00}^{+1.30}\right)
\end{aligned}
$$

Bkg. in same-sign / 3 leptons
\square Lost / three leptons
\square Charge mismeasurement
$\square W^{ \pm} W^{ \pm}+j j /$ titw
\square Nonprompt leptons
$\square \gamma \rightarrow$ lepton
Backgrounds in 4/5/6 leptons

$\square \mathrm{ZZ}$	$\square \mathrm{tWZ}$	\square Other
$\square \mathrm{t} Z$	$\square \mathrm{WZ}$	

Alberto Mecca - DIS2022

1 region
1 region

- Simultaneous fit with 4 signal strengths:
- WWW $\rightarrow 2.5$ б
- WZZ $\rightarrow 1.6 \sigma$
- WWZ $\rightarrow 3.5 \sigma$
- ZZZ $\rightarrow 0.0 \sigma$
- Combined fit for VVV $\rightarrow \mathbf{5 . 9 \sigma}$
- Wyy can be produced via a quartic coupling, while Zyy cannot (in the SM)
- The photons can also be produced by initial or final state radiation

- Major backgrounds estimated from data
- Electrons misidentified as photons - e.g. Zy \rightarrow eey [eyr]
- Jets misidentified as photons: $C R=V+\gamma_{\text {loose }}$
- Subtract $Z \gamma \rightarrow$ eey (MC) before computing FR
- QCD: ty, tty, ttyp, $\mathrm{V} V \mathrm{Y} \rightarrow$ from MC
- Event selection: kinematic cuts
- Systematics
- Mostly from data-driven background
- Estimated by inverting lepton isolation and applying same strategy

Jets control region

- Fit to $p_{T}{ }^{y r}$ for electron and

$$
\begin{array}{ll}
\circ & \mathrm{WYY} \rightarrow 3.1 \sigma \\
\circ & \mathrm{ZYY} \rightarrow 4.8 \sigma
\end{array}
$$

- Uncertainty is dominated by systematics
- Extraction of the fiducial cross section

$$
\begin{aligned}
& \sigma(\mathrm{W} \gamma \gamma)_{\mathrm{SR}}=\mathbf{1 3 . 6} \mathbf{6}_{-1.9}^{+1.9}(\mathrm{stat}){ }_{-4.0}^{+4.0}(\text { syst }) \pm 0.08(\mathrm{PDF}+\text { scale }) \mathrm{fb} \\
& \sigma(\mathrm{Z} \gamma \gamma)_{\mathrm{SR}}=\mathbf{5 . 4 1} \mathbf{1 0}_{-0.55}^{+0.58}(\text { stat }){ }_{-0.70}^{+0.64}(\text { syst }) \pm 0.06(\mathrm{PDF}+\text { scale }) \mathrm{fb}
\end{aligned}
$$

CMS
$137 \mathrm{fb}^{-1}(13 \mathrm{TeV})$
 muon channels separately

- The Precision Proton Spectrometer (PPS) allows to measure forward (intact) protons
- Access to the full kinematics of the event!
- $100 \mathrm{fb}^{-1}$ of data (PPS in physics status)
- Search for pp \rightarrow pp VV \rightarrow pp jj, V = W, Z - Search for VBs decays into single large jets

Backgrounds

- Main: QCD multi jet
- Z+jet, W+Jet, tt production
- Diffractive pilup is not well modelled \rightarrow data-driven

Protons

- multiRP \rightarrow better ξ resolution
- $0.05<\xi<\xi^{\max }$ [depends on year] - $180 \mathrm{GeV}<\mathrm{M}_{\mathrm{pp}}<1.55-2.1 \mathrm{TeV}$ \rightarrow lower bound by jet trigger

PPS Roman Pots containing Detectors

Pileup background

- 2D sideband in $\mathrm{m}-\mathrm{y}$ plane
- | $1-m_{v v} / m_{p p} \mid>1.0$
- $\left|y_{p p}-y_{v v}\right|>0.5$
- Both δ and o are inside
- and in the acoplanarity

$$
\mathrm{a}=\left|1-\Delta \varphi_{\mathrm{j} j}\right|<0.01
$$

- Binned fit: \{2016/17/18\} ® \{WW / ZZ\} \{fully [8] / partial [o]\}
- Limits to aQGC: first result on yyZZ
- ~15 times better than Run1 on YY \rightarrow WW without tagged protons
- Limits on contribution from high mass resonance
- Divide WW and ZZ with cut on: $\overline{\cos (\pi / 4)} * M_{\text {pruned }}^{\text {leading }}+\sin (\pi / 4) * M_{\text {pruned }}^{\text {subleading }}$

Fiducial cross section limits:
$\sigma(p p \rightarrow p \mathrm{WW} p)_{0.04<\xi<0.20, m>1000 \mathrm{GeV}}<67\left(53_{-19}^{+34}\right) \mathrm{fb}$ $\sigma(p p \rightarrow p \mathrm{ZZ} p)_{0.04<\bar{\xi}<0.20, m>1000 \mathrm{GeV}}<43\left(62_{-20}^{+33}\right) \mathrm{fb}$

Summary

References diboson [1]

- The CMS collaboration, "Measurement of $\mathrm{W}^{ \pm} \mathrm{Y}$ differential cross sections in proton-proton collisions at $\sqrt{ } \mathrm{s}=$ 13 TeV and effective field theory constraints", Phys. Rev. D 105 (2022) 052003, 9 March 2022, doi:10.1103/PhysRevD.105.052003

SMP-20-005

- The CMS collaboration, "Measurement of the inclusive and differential WZ production cross sections, polarization angles, and triple gauge couplings in pp collisions at $\sqrt{ } s=13 \mathrm{TeV}{ }^{\prime \prime}$

SMP-20-014

- The CMS collaboration, "Measurements of the electroweak diboson production cross sections in proton-proton collisions at $\sqrt{ } s=5.02 \mathrm{TeV}$ using leptonic decays"

SMP-20-012

- The CMS collaboration, "Measurement of WY production cross section in proton-proton collisions at $\sqrt{ } \mathrm{s}=13$ TeV and constraints on effective field theory coefficients"

SMP-19-002

- Measurements of $p p \rightarrow Z Z$ production cross sections and constraints on anomalous triple gauge couplings at $\sqrt{ } \mathrm{s}=13 \mathrm{TeV}$ "

SMP-19-001

References diboson [2]

- The CMS Collaboration, "W+W- boson pair production in proton-proton collisions at $\sqrt{ } \mathrm{s}=13 \mathrm{TeV}$ "
- The CMS Collaboration, "Evidence for WW production from double-parton interactions in proton-proton collisions at $\sqrt{ } \mathrm{s}=13 \mathrm{TeV}$ "
- The CMS Collaboration, "Search for exclusive $\mathrm{YY} \rightarrow \mathrm{WW}$ and $\mathrm{YY} \rightarrow \mathrm{ZZ}$ production in final states with jets and forward protons", CMS-PAS-SMP-21-014, March 2022

SMP-21-014

- The CMS Collaboration, "Search for anomalous triple gauge couplings in WW and WZ production in lepton + jet events in proton-proton collisions at $\sqrt{ } \mathrm{s}=13 \mathrm{TeV}$ "
- "Measurements of the $\mathrm{pp} \rightarrow \mathrm{WZ}$ inclusive and differential production cross section and constraints on charged anomalous triple gauge couplings at $\sqrt{ } s=13 \mathrm{TeV}$ "
- "Measurements of the $\mathrm{pp} \rightarrow \mathrm{ZZ}$ production cross section and the $\mathrm{Z} \rightarrow 4 \ell$ branching fraction, and constraints on anomalous triple gauge couplings at $\sqrt{ } s=13 \mathrm{TeV}$ "

SMP-16-017

References triboson

- The CMS collaboration, "Observation of the production of three massive gauge bosons at $\sqrt{ } \mathrm{s}=13 \mathrm{TeV}$ ", Phys. Rev. Lett. 125 (2020) 151802, 5 Oct 2020, 10.1103/PhysRevLett. 125.151802 VVV
- The CMS collaboration, "Measurements of the $\mathrm{pp} \rightarrow \mathrm{W}^{ \pm} \mathrm{yy}$ and $\mathrm{pp} \rightarrow$ Zyy cross sections at $\sqrt{ } \mathrm{s}=13 \mathrm{TeV}$ and limits on anomalous quartic gauge couplings", J. High Energ. Phys. 2021, 174 (2021), 21 Oct 2021, doi:10.1007/jhep10(2021)174 WYy,Zyץ
- The CMS Collaboration, "Search for the production of $W^{ \pm} W^{ \pm} W^{\mp}$ events at $\sqrt{ } s=13 \mathrm{TeV}$ ", Phys. Rev. D 100 (2019) 012004, 26 Jul 2019, doi:10.1103/physrevd.100.012004 WWW

SMP-17-013

- The CMS Collaboration, "Measurements of the $\mathrm{pp} \rightarrow \mathrm{W} \gamma \mathrm{Y}$ and $\mathrm{pp} \rightarrow$ Z Yy cross sections and limits on anomalous quartic gauge couplings at $\sqrt{ } s=8$ TeV", J. High Energy Phys. 10 (2017) 072, 11 Oct 2017, doi:10.1007/jhep10(2017)072 8 TeV WYy,ZYץ

SMP-15-008

- The CMS Collaboration, "A search for WWy and WZy production and constraints on anomalous quartic gauge couplings in pp collisions at $\sqrt{ } \mathrm{s}=8 \mathrm{TeV} "$, Phys. Rev. D 90 (2014) 032008, 25 Aug 2014, doi:10.1103/PhysRevD.90.032008

Backup

The CMS Detector

Alberto Mecca - DIS2022
3 May 2020

Cross section summary

Process	Fiducial cross section	Total cross section	
$\mathrm{ZZ} \rightarrow 4 \ell$	$40.5 \pm 1.5 \mathrm{fb}$	$17.4 \pm 0.8 \mathrm{pb}$	
$\mathrm{WZ} \rightarrow 3 \ell v$	$299 \pm 11 \mathrm{fb}$	$50.6 \pm 2.1 \mathrm{pb}$	
$\mathrm{W}^{+} \mathrm{W}^{-} \rightarrow 2 \ell 2 v$	$1592 \pm 87 \mathrm{fb}$	$117.6 \pm 6.8 \mathrm{pb}$	
$\mathrm{WW} \rightarrow 2 \ell 2 v \mathrm{DPS}$			$1.41 \pm 0.40 \mathrm{pb}$
W_{Y}	$15580 \pm 750 \mathrm{fb}$		

Process
Fiducial cross section Total cross section

Process	Theoretical cross section (NLO)	$\boldsymbol{\sigma} \times \mathbf{B R}$	Expected events for $137 \mathrm{fb}^{-1}$
$W W W$	509 fb	54.0 fb	7400
$W W Z$	354 fb	4.12 fb	560
$W Z Z$	91.6 fb	0.36 fb	50
$Z Z Z$	37.1 fb	0.05 fb	6.9

$Z Z \rightarrow 4 \ell$
 SMP-19-001

Uncertainty	Range of values		Expected 95\% CL	Observed 95\% CL
Lepton efficiency	2-5\%	aTGC parameter	$\times 10^{-4}$	$\times 10^{-4}$
Trigger efficiency	1-2\%	f_{4}^{Z}	-8.8;8.3	-6.6;6.0
Background	0.6-1.3\%	f_{5}^{Z}	-8.0; 9.9	$-5.5 ; 7.5$
Pileup	1\%	f_{4}^{γ}	-9.9 ; 9.5	-7.8;7.1
$\mu_{\mathrm{R}}, \mu_{\mathrm{F}}$	1\%	$\stackrel{f_{5}^{\gamma}}{\text { EFT parameter }}$	$\begin{gathered} -9.2 ; 9.8 \\ \mathrm{TeV}^{-4} \end{gathered}$	$\begin{gathered} -6.8 ; 7.5 \\ \mathrm{TeV}^{-4} \end{gathered}$
PDF	1\%	${ }_{C_{\tilde{\text { ® }} W} / \Lambda^{4}}$	-3.1; 3.3	-2.3; 2.5
NNLO/NLO corrections	1\%	$C_{\text {WW }} / \Lambda^{4}$	-1.7 ; 1.6	-1.4;1.2
Integrated luminosity	2.5\% (2016), 2.3\% (2017),	$C_{\text {BW }} / \Lambda^{4}$	-1.8;1.9	-1.4;1.3
	2.5\% (2018)	$С_{\text {BB }} / \Lambda^{4}$	-1.6;1.6	-1.2;1.2

Year	Fiducial cross section, fb	Year	Total cross section, pb
2016	41.6 ± 1.4 (stat) ± 1.3 (syst) ${ }_{-1.0}^{+1.1}$ (lumi)	2016	17.9 ± 0.6 (stat) ${ }_{-0.5}^{+0.6}$ (syst) ± 0.4 (theo) ${ }_{-0.4}^{+0.5}$ (lumi)
2017	39.2 ± 1.2 (stat) ${ }_{-1.2}^{+1.3}$ (syst) ${ }_{-0.9}^{+1.0}$ (lumi)	2017	16.8 ± 0.5 (stat) ${ }_{-0.5}^{+0.6}$ (syst) ± 0.4 (theo) ± 0.4 (lumi)
2018	39.3 ± 1.0 (stat) ${ }_{-1.1}^{+1.3}$ (syst) ± 1.0 (lumi)	2018	16.9 ± 0.4 (stat) ± 0.5 (syst) ± 0.4 (theo) ± 0.4 (lumi)
Combined	40.1 ± 0.7 (stat) ± 1.1 (syst) ± 0.7 (lumi)	Combined	17.2 ± 0.3 (stat) ± 0.5 (syst) ± 0.4 (theo) ± 0.3 (lumi)

SMP-20-014

- Fiducial region for cross section:
- 3ℓ (no t decay)
- FRS-corrected for $\Delta R(\ell, \gamma)<0.1$
- $\mathrm{pT}\left(\ell_{\mathrm{Z} 1}\right)>25 \mathrm{GeV}$
- $\mathrm{pT}\left(l_{\mathrm{z}}\right)>10 \mathrm{GeV}$
- $\mathrm{pT}\left(\ell_{\mathrm{w}}\right)>25 \mathrm{GeV}$
- $60 \mathrm{GeV}<\mathrm{m}\left(\ell_{\mathrm{Z} 1}, \ell_{\mathrm{Z} 2}\right)<120 \mathrm{GeV}$
- $\mathrm{m}\left(\mathrm{ll}_{\text {ossf }}\right)>4 \mathrm{GeV}$
- $\mathrm{m}(3 \mathrm{l})>100 \mathrm{GeV}$
- Free parameters: WZ, ZZ, ttZ, tZq
and $X+Y$

b-tag WP
Mistag q-g jets: 0.1%
Efficiency b-jets: $40-60 \%$

Systematics

Source	2016%	2017%	2018%	Correlation scheme	Processes
Electron efficiency	$0-3.3$	$0-3.0$	$0-2.8$	Partially correlated	All MC
Muon efficiency	$0-2.4$	$0-2.1$	$0-2.0$	Partially correlated	All MC
Electron energy scale	$0-5$	$0-5$	$0-5$	Correlated	All MC
Muon energy scale	$0-5$	$0-5$	$0-5$	Correlated	All MC
Trigger efficiency	$-1.0 /+0.6$	$-0.7 /+0.6$	$-0.7 /+0.6$	Partially correlated	All MC
Jet energy scale	0.9	0.7	1.1	Partially correlated	All MC
btagging	1.0	0.7	0.9	Correlated	All MC
bmistagging	0.5	0.4	0.3	Correlated	All MC
Pileup	0.9	0.8	0.8	Correlated	All MC
ISR	$0.2-20$	$0.2-20$	$0.2-20$	Correlated	WZ
Nonprompt shape	$5-50$	$5-50$	$5-50$	Correlated	Nonprompt
Nonprompt norm.	30	30	30	Correlated	Nonprompt
VVV norm.	50	50	50	Correlated	VVV
VH norm.	25	25	25	Correlated	VH
WZ EWK norm.	20	20	20	Correlated	WZ EWK
ZZ	Free	Free	Free	Correlated	ZZ
t̄̄Z norm.	Free	Free	Free	Correlated	tt̄X
tZq norm.	Free	Free	Free	Correlated	tZq
X γ norm.	Free	Free	Free	Correlated	X γ
Integrated luminosity	1.2	2.3	2.5	Partially correlated	All MC
Statistical uncertainties	By bin	By bin	By bin	Uncorrelated	All MC
Theoretical (PDF + scale)	0.9	0.9	0.9	Correlated	WZ

$W^{+} W^{-} \rightarrow \ell^{+} \ell^{-} 2 v$ - Radom foresis SMP-18.004

- Each tree uses a subset of the variables \rightarrow reduces overfitting
- RF produces a purer SR, but it's more sensitive to p_{T} WW
- $\sigma_{\text {tot }}{ }^{\mathrm{RF}}=131.4 \pm 1.3$ (stat) ± 6.0 (syst) ± 5.1 (theo) ± 3.5 (lumi) pb

Preselection

$W^{+} W^{-} \rightarrow \ell^{+} \ell^{-} 2 v \quad$ SMP-18-004

p_{T} threshold (GeV)	Signal strength	Cross section (pb)
25	1.091 ± 0.073	0.836 ± 0.056
30	1.054 ± 0.065	0.892 ± 0.055
35	1.020 ± 0.060	0.932 ± 0.055
45	0.993 ± 0.057	1.011 ± 0.058
60	0.985 ± 0.059	1.118 ± 0.067

Number of jets	0	1	≥ 2
Efficiency	0.555 ± 0.003	0.448 ± 0.004	0.290 ± 0.004

Number of jets	0	1	≥ 2
Before unfolding	$0.795 \pm 0.007 \pm 0.053$	$0.180 \pm 0.006 \pm 0.039$	$0.025 \pm 0.005 \pm 0.018$
After unfolding	$0.773 \pm 0.008 \pm 0.075$	$0.193 \pm 0.007 \pm 0.043$	$0.034 \pm 0.006 \pm 0.033$
Predicted	$0.677 \pm 0.007 \pm 0.058$	$0.248 \pm 0.007 \pm 0.033$	$0.075 \pm 0.006 \pm 0.026$

Coefficients	68% confidence interval		95% confidence interval	
$\left(\mathrm{TeV}^{-2}\right)$	expected	observed	expected	observed
$c_{\mathrm{WWW}} / \Lambda^{2}$	$[-1.8,1.8]$	$[-0.93,0.99]$	$[-2.7,2.7]$	$[-1.8,1.8]$
$c_{\mathrm{W}} / \Lambda^{2}$	$[-3.7,2.7]$	$[-2.0,1.3]$	$[-5.3,4.2]$	$[-3.6,2.8]$
c_{B} / Λ^{2}	$[-9.4,8.4]$	$[-5.1,4.3]$	$[-14,13]$	$[-9.4,8.5]$

$W^{+} W^{-} \rightarrow \ell^{+} \ell^{-} 2 v \quad$ SMP-18-004

Event yields in the SR

Process	Sequential Cut				Random Forest	
	DF		SF		$\begin{aligned} & \mathrm{DF} \\ & \text { all jet multiplicities } \end{aligned}$	
	0-jet	1-jet	$0-\mathrm{jet}$	1-jet		
Top quark	2110 ± 110	5000 ± 120	1202 ± 66	2211 ± 69	3450 ± 340	830 ± 82
Drell-Yan	129 ± 10	498 ± 38	1230 ± 260	285 ± 86	1360 ± 130	692 ± 72
VZ	227 ± 13	270 ± 12	192 ± 12	110 ± 7	279 ± 29	139 ± 10
V V V	11 ± 1	29 ± 2	4 ± 1	6 ± 1	13 ± 4	3 ± 2
$\mathrm{H} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-}$	269 ± 41	150 ± 25	50 ± 2	27 ± 1	241 ± 26	90 ± 10
$\mathrm{W} \gamma^{(*)}$	147 ± 17	136 ± 13	123 ± 5	58 ± 6	305 ± 88	20 ± 6
Nonprompt leptons	980 ± 230	550 ± 120	153 ± 39	127 ± 32	940 ± 300	183 ± 59
Total background	3870 ± 260	6640 ± 180	2950 ± 270	2820 ± 120		
	10510		5780		6600 ± 480	1960 ± 120
$\mathrm{q} \overline{\mathrm{q}} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-}$	6430 ± 250	2530 ± 140	2500 ± 180	1018 ± 71	12070 ± 770	2820 ± 180
$\mathrm{gg} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-}$	521 ± 66	291 ± 38	228 ± 32	117 ± 15	693 ± 44	276 ± 17
Total $\mathrm{W}^{+} \mathrm{W}^{-}$	6950 ± 260	2820 ± 150	2730 ± 190	1136 ± 72		
	9780			200	12770 ± 820	3100 ± 200
Total yield	10820 ± 360	9460 ± 240	5680 ± 330	3960 ± 360		
	20280	430			19360 ± 950	5060 ± 240
Purity	0.64	0.30	0.48	0.29		
	0.		0.		0.66	0.61
Observed	10866	9404	5690	3914	19418	5210

Features used

Feature	Classifier	
	Drell-Yan	Top quark
Lepton flavor	\checkmark	
Number of jets		\checkmark
$p_{\mathrm{T}}^{\ell \text { min }}$	\checkmark	
$p_{\mathrm{T}}^{\text {miss }}$	\checkmark	\checkmark
$p_{\mathrm{T}}^{\text {miss,proj }}$	\checkmark	
$p_{\mathrm{T}}^{\ell \ell}$	\checkmark	\checkmark
$m_{\ell \ell}$	\checkmark	
$m_{\ell \ell p_{\mathrm{T}}^{\text {miss }}}$	\checkmark	
$\Delta \phi_{\ell \ell p_{\mathrm{T}}^{\text {miss }}}$	\checkmark	\checkmark
$\Delta \phi_{\ell \mathrm{J}}$		\checkmark
$\Delta \phi_{p_{\mathrm{T}}^{\text {miss }}}$		\checkmark
$\Delta \phi_{\ell \ell}$	\checkmark	
H_{T}	\checkmark	\checkmark
$R e c o i l$		\checkmark

$W \gamma \rightarrow \ell v Y \quad(\ell=e, \mu)$

- Prompt $\ell+\gamma: \mathbf{Z Y}$, tty, $\mathbf{V V Y}(V=W, Z) \rightarrow$ MC
- Photon conversion $(\gamma \rightarrow e e) \rightarrow \mathrm{MC}$
- Electrons faking photons \rightarrow MC template, normalization from fit to $m_{l y}$
- Nonprompt leptons (photons):
data-driven from dijet (W+jets) CR Measurement of the total cross section:
- $\sigma=15.58 \pm 0.05$ (stat) ± 0.73 (syst) ± 0.15 (theo) $\mathrm{pb}=15.58 \pm 0.75 \mathrm{pb}$
- $\sigma_{\text {MadGraph }}=15.4 \pm 1.2$ (scale) ± 0.1 (PDF) pb
- $\sigma_{\text {Powheg }}=22.4 \pm 3.2$ (scale) ± 0.1 (PDF) pb

- Probe WWy coupling \rightarrow limits on EFT dimension $6 \boldsymbol{0}_{\text {www }}$ - Fit to photon $\mathrm{p}_{\mathrm{T}} \rightarrow$ mostly high energy bin (> 900 GeV)

Coefficient	Exp. lower	Exp. upper	Obs. lower	Obs. upper
$c_{W W W} / \Lambda^{2}$	-0.85	0.87	-0.90	0.91
c_{B} / Λ^{2}	-46	45	-40	41
$c_{\bar{W} W W} / \Lambda^{2}$	-0.43	0.43	-0.45	0.45
$c_{\bar{W}} / \Lambda^{2}$	-23	22	-20	20

$W_{Y} \rightarrow \ell_{v} \gamma \quad(\ell=\mathrm{e}, \mu) \quad$ SMP-20-005

$$
\eta^{v}=\eta^{\ell} \pm \ln \left[1+\Delta \sqrt{2+\Delta^{2}}+\Delta^{2}\right]
$$

$\Delta=\sqrt{\frac{m_{\mathrm{W}}^{2}-m_{\mathrm{T}}^{2}}{2 p_{\mathrm{T}}^{\ell} p_{\mathrm{T}}^{v}}}$

Off-diagonal = wrong sign for $p_{z}(v)$

$$
\phi_{f}= \begin{cases}-(\pi+\phi), & \text { for } \phi<-\frac{\pi}{2} \\ \phi, & \text { for }|\phi|<\frac{\pi}{2} \\ \pi-\phi, & \text { for } \phi>\frac{\pi}{2}\end{cases}
$$

Fiducial region

- $\mathrm{p}_{\mathrm{T}}{ }^{l}>30 \mathrm{GeV},\left|\eta^{\ell}\right|<2.5$
- $\mathrm{p}_{\mathrm{T}}{ }^{\mathrm{Y}}>30 \mathrm{GeV},\left|\eta^{\mathrm{Y}}\right|<2.5$
- $\mathrm{p}_{\mathrm{T}}^{\text {miss }}>40 \mathrm{GeV}$
- $\Delta R(l, \gamma)>0.7$

| Uncertainty | Affects | |
| :--- | :---: | :--- | :--- |
| | shape | years | Relative effect on expected yield

$W_{Y} \rightarrow \ell v \gamma \quad(\ell=\mathrm{e}, \mu) \quad$ SMP-20-005

$p_{\mathrm{T}}^{\gamma} \operatorname{bin}(\mathrm{GeV})$	$0 \leq\left\|\phi_{f}\right\|<\pi / 6$		$\pi / 6 \leq\left\|\phi_{f}\right\|<\pi / 3$		$\pi / 3 \leq\left\|\phi_{f}\right\|<\pi / 2$	
	$\mu^{\text {int }}$	$\mu^{\text {BSM }}$	$\mu^{\text {int }}$	$\mu^{\text {BSM }}$	$\mu^{\text {int }}$	$\mu^{\text {BSM }}$
$150-200$	-0.19	0.52	0.03	0.50	0.23	0.44
$200-300$	-0.38	2.5	0.02	2.1	0.43	1.9
$300-500$	-0.95	10.7	0.06	10.3	1.0	11.0
$500-800$	-2.2	83.0	0.07	82.5	2.4	81.6
$800-1500$	-4.9	688.5	0.02	651.7	4.9	646.2

WW+pp and ZZ+pp

Jets

- $\mathrm{p}_{\mathrm{T}}{ }^{\mathrm{j}}>200 \mathrm{GeV},\left|\eta_{\mathrm{j}}\right|<2.5$
- $\mathrm{m}_{\mathrm{j}}>1126 \mathrm{GeV}$ (trigger)
- $\left|\Delta \eta_{i j}\right|<1.3$
- acoplanarity:
$a=\left|1-\Delta \varphi_{\mathrm{ij}}\right|<0.01$
- $\mathrm{p}_{\mathrm{T}}{ }^{\mathrm{j} 1} / \mathrm{p}_{\mathrm{T}}^{\mathrm{j} 2}<1.3$
- $\tau_{21}{ }^{\text {DDT }}<0.75 \quad\left({ }^{*}\right)$
(*) Designing Decorrelated
Tagger. Goal: avoid mass
sculpting. See arXiv:1603.00027

ABCD method	$\mathrm{a}<0.01$	$\mathrm{a}>0.01$
in rectangle	A (SR)	B
out rectangle	\mathbf{C}	D

$$
N_{B K G}^{A}=N^{B} * N^{C} / N^{D}
$$

VVV (V = W,Z)
 SMP-19-014

Selection in the 21 and 3 l regions

Features	Selections	
	$S S+\geq 2 j \quad S S+1 j$	3ℓ
Triggers	Select events passing dilepton triggers	
Number of leptons	Select events with 2 (3) leptons passing SS-ID (3८-ID) for SS (3८) final states	
Number of leptons	Select events with 2 (3) leptons passing veto-ID for SS (3) final states	
Isolated tracks	No additional isolated tracks	-
b-tagging	no b-tagged jets and soft b-tag objects	
Jets	≥ 2 jets 1 jet	≤ 1 jet
$m_{\text {JJ }}$ (leading jets)	$<500 \mathrm{GeV}$	-
$\Delta \eta_{\mathrm{JJ}}$ (leading jets)	<2.5	-
$m_{\ell \ell}$	$>20 \mathrm{GeV}$	-
$m_{\ell \ell}$	$\left\|m_{\ell \ell}-m_{\mathrm{Z}}\right\|>20 \mathrm{GeV}$ if $\mathrm{e}^{ \pm} \mathrm{e}^{ \pm}$	-
$m_{\text {SFOS }}$	- -	$m_{\text {SFOS }}>20 \mathrm{GeV}$
$m_{\text {SFOS }}$	- -	$\left\|m_{\text {SFOS }}-m_{\mathrm{Z}}\right\|>20 \mathrm{GeV}$
$m_{\ell \ell \ell}$	- -	$\left\|m_{\ell \ell \ell}-m_{\mathrm{Z}}\right\|>10 \mathrm{GeV}$
	Alberto Mecca - DIS2022	

VVV (V = W,Z) - strategy

SMP-19-014

- $\mathrm{W}^{ \pm} \mathrm{W}^{ \pm} \mathrm{W}^{\mp} \rightarrow \ell^{ \pm} v \quad \ell^{ \pm} v \quad \mathrm{qq} \rightarrow 2 \ell^{ \pm}$
- // $\quad \rightarrow \ell^{ \pm} v \ell^{ \pm} v \ell^{\ddagger} v \rightarrow 3 \ell^{ \pm}$

9 regions: $\left\{1 \mathrm{~J}, \mathrm{~m}_{\mathrm{ij}}-\mathrm{in}, \mathrm{m}_{\mathrm{jj}}\right.$-out $\} \times\{e \mathrm{e}, \mathrm{e}, \mu \mu \mathrm{H}\}$

- $W^{ \pm} W^{ \pm} Z$
$\rightarrow \ell^{ \pm} v \quad \ell^{ \pm} v \quad \ell^{ \pm} \ell^{\mp} \rightarrow \mathbf{4} \ell^{ \pm} \quad 2$ regions: BDT for ttZ, BDT for ZZ
- $W^{ \pm}$Z Z
$\rightarrow \ell^{ \pm} v \ell^{ \pm} \ell^{\mp} \ell^{ \pm} \ell^{\mp} \rightarrow \mathbf{5} \ell^{ \pm} \quad 1$ region
- Z Z Z
$\rightarrow \ell^{ \pm} \ell^{\mp} \ell^{ \pm} \ell^{\mp} \ell^{ \pm} \ell^{\mp} \rightarrow \mathbf{6} \ell^{ \pm} \quad 1$ region
- Backgrounds for same sign dilepton (SS-2e):
- Lost lepton: mostly WZ with a lost lepton from the Z
- Nonprompt lepton: 1 prompt + 1 nonprompt from hadronic decays
- Irreducible background: $W^{ \pm} W^{ \pm}$from VBS, double parton scattering
- Charge misidentification: a lepton from Z is assigned the wrong charge; negligible for μ

$$
\begin{aligned}
& m_{\mathrm{ij}}-\mathrm{in}: 65<\mathrm{m}_{\mathrm{ij}}<95 \mathrm{GeV} \\
& \mathrm{~m}_{\mathrm{T}}^{\max }=\max \left(\mathrm{m}\left(\mathrm{p}_{\mathrm{T}}{ }^{\text {miss }}, \mathrm{l}_{\mathrm{i}}\right)\right)
\end{aligned}
$$

Alberto Mecca - DIS2022

- Background for three-lepton (3४):
- WZ with off-shell Z
- Nonprompt lepton: 2 prompt + 1 nonprompt from hadronic decays
- Irreducible: ttW
- Background fo four-lepton (4母): ZZ, ttZ, tWZ, WZ+fake, Higgs
- Two BDTs: one for ZZ, one for ttZ

VVV (V = W,Z) - strategy [3]

SMP-19-014

$5 \ell(\mathrm{WZZ}) \quad 6 \ell(\mathrm{ZZZ})$
$\mathrm{p}_{\mathrm{T}}^{\ell 1,2}>25 \mathrm{GeV} / \mathrm{c}, \mathrm{p}_{\mathrm{T}}^{\ell>2}>10 \mathrm{GeV} / \mathrm{c}$, no b-tagged jets
2 SFOS pairs
3 SFOS pairs
$\left|m_{\text {SFOS }}-\mathrm{m}_{\mathrm{Z}}\right|<15 \mathrm{GeV} \quad\left|\mathrm{m}_{\text {SFOS }}-\mathrm{m}_{\mathrm{Z}}\right|<15 \mathrm{GeV}$
$\mathrm{ZZ}+\ell_{\text {fake }} \mathrm{m}\left(\overrightarrow{\mathrm{p}}_{\mathrm{T}}^{\mathrm{miss}}+\overrightarrow{\mathrm{p}}_{\mathrm{T}}^{\mathrm{e}}\right)>50 \mathrm{GeV} \quad \sum_{\mathrm{i}=1}^{6}\left|\overrightarrow{\mathrm{p}}_{\mathrm{T}} \ell_{\mathrm{i}}\right|>250 \mathrm{GeV} \quad \mathrm{tt} \mathrm{H} \quad \mathrm{ZZ}+\ell \ell$

- Background for five-lepton (5l):
- ZZ + fake lepton
- Background for six-lepton (6) : negligible

VVV (V = W,Z) - results

Process	Cross section (fb)
\quad Treating Higgs boson contributions as signal	
VVV	$1010_{-200}^{+210}+150$
WWW	$590_{-120}^{+150}{ }_{-130}^{+160}$
WWZ	$300_{-100}^{+120}{ }_{-40}^{+50}$
WZZ	$200_{-110}^{+160}{ }_{-20}^{+70}$
ZZZ	<200
Treating Higgs boson contributions as background	
VVV	$370_{-130}^{+140}+80$
WWW	$190_{-100}^{+110}+80$
WWZ	$100_{-70}^{+80}+30$
WZZ	$110^{+100}+{ }_{-70}^{+30}$
ZZZ 37	<80

- Simultaneous fit with 4 signal strengths
- WWW $\rightarrow 3.3$ б
- WWZ $\rightarrow 3.4 \sigma$
- WZZ \rightarrow

- Combined fit for VVV produciton $\rightarrow 5.9$ б
 CMS

Data and prediction
\$ Data \pm stat. uncertainty
.
Triboson signals
\square WWW ($\left.\mu_{\text {www }}=1.15_{0.44}^{+0.45}\right)$
\square WWZ $\left(\mu_{\text {wwz }}=0.86_{-0.35}^{+0.35}\right)$
\square WZZ ($\left.\mu_{\text {wZz }}=2.24_{-1.25}^{+1.92}\right)$
$\square Z Z Z\left(\mu_{\text {ZZZ }}=0.0_{-0.00}^{+1.30}\right)$
Bkg. in same-sign / 3 leptons
\square Lost/three leptons
\square Charge mismeasurement
$\square W^{ \pm} W^{ \pm}+j j / t \bar{t} W$
\square Nonprompt leptons
$\square \gamma \rightarrow$ lepton
Backgrounds in 4/5/6 leptons
\square
$\square \mathrm{ZZ}$
$\square \mathrm{t} Z$
\square tw Alberto Mecca - DIS2022

VVV (V = W,Z)
 SMP-19-014

selection for electrons

selection for muons

	SS-ID	Loose-SS-ID	3ℓ-ID	Loose-3 ℓ-ID		SS-ID	Loose-SS-ID	3ℓ-ID	Loose-3 ℓ-ID
Veto ID see Table 7	Com	mon Veto ID	Com	mon Veto ID	Veto ID see Table 7	Common Veto ID		Common Veto ID	
POG MVA wp	MVA P	G 80\% No Iso	MVA P	OG 90\% No Iso	POG ID	Medium		Medium	
p_{T}		25 GeV		20 GeV	$p_{\text {T }}$	$>25 \mathrm{GeV}$		$>20 \mathrm{GeV}$	
$\|\eta\|$ (veto $1.4<\|\eta\|<1.6)$		< 2.4		<2.4	$\|\eta\|$	<2.4		<2.4	
$\mathrm{IP}_{3 D}$		0.01 cm		0.015 cm	$\mathrm{IP}_{3 D}$	$<0.015 \mathrm{~cm}$		$<0.015 \mathrm{~cm}$	
$\left\|d_{x y}\right\|$		0.05 cm		$<0.05 \mathrm{~cm}$	$\mathrm{IP}_{3 D} / \sigma_{\mathrm{IP}_{3 D}}$	< 4		<4	
$\left\|d_{z}\right\|$		0.1 cm		$<0.1 \mathrm{~cm}$	$\left\|d_{x y}\right\|$	$<0.05 \mathrm{~cm}$		$<0.05 \mathrm{~cm}$	
$I_{\text {rel,R=0.3,EA,Lep }}$	<0.05	<0.4	<0.10	> <0.4	$\left\|d_{z}\right\|$	$<0.1 \mathrm{~cm}$		$<0.1 \mathrm{~cm}$	
3-charge agreement	yes		not required		$\begin{aligned} & I_{\text {rel, }, \mathrm{R}=0.3 \text {,EA,Lep }} \\ & \sigma\left(p_{\mathrm{T}}\right) / p_{\mathrm{T}}^{\text {track }} \end{aligned}$	<0.04	<0.4	$<0.15<0.2{ }^{<0.4}$	
Trigger safe cuts		yes		yes			<0.2		

Lepton Flavor	Electron	Muon	
ID	MVA POG Nolso	Loose	
\|n		<2.5	<2.4
$\left\|d_{z}\right\|$	$<0.1 \mathrm{~cm}$		
$\left\|d_{x y}\right\|$	$<0.05 \mathrm{~cm}$		
$I_{\text {rel }}(\mathrm{R}=0.3, \mathrm{EA}$, Lep $)$	< 0.4		

Wyy and ZyY

SMP-19-013

Selection for muons

Variable	Cut
Global muon	Yes
Particle-flow muon	Yes
Track fit $\chi^{2} /$ ndof <10	Yes
Muon chamber hits	≥ 1
Muon station segments	≥ 2
$d_{x y}$	<0.2
d_{z}	<0.5
Pixel hits	>1
Tracker layers hits	>5

Selection for electrons

Basic selection	Electrons	Muons
	$\begin{gathered} p_{T}>15 \mathrm{GeV} \\ \|\eta\|<1.442 \text { or } 1.566<\|\eta\|<2.5 \\ \text { Cut based Tight ID } \\ \text { Impact parameter cuts } \end{gathered}$	$\begin{gathered} p_{T}>15 \mathrm{GeV} \\ \|\eta\|<2.4 \end{gathered}$ Cut based Tight ID Rochester corrections
		photons
	$\|\eta\|<1.44$ Cut b	$\begin{aligned} & T>20 \mathrm{GeV} \\ & \text { or } 1.566<\|\eta\|<2.5 \\ & \text { sed Medium ID } \\ & \text { sel seed veto } \\ & \begin{array}{l} \gamma-91.2 \mid>5 \\ \gamma, \gamma / 1)>0.4 \end{array} \quad Z \gamma \rightarrow \text { ee }(\text { ery }) \\ & \hline \end{aligned}$
Event selection	W $\gamma \gamma$	$\mathrm{Z} \gamma \gamma$
	Exactly one selected lepton $p_{T, \text { lead }}^{\mathrm{e}(\mu)}>35(30) \mathrm{GeV}$ At least two photons	At least two selected same flavour leptons $\begin{gathered} p_{T, \text { lead }}^{\mathrm{e}(\mu)}>35(30) \mathrm{GeV} \\ \text { At least two photons } \\ m_{\mathrm{Z}}>55 \mathrm{GeV} \end{gathered}$

Variable	Barrel	Endcap
$\|\eta\|$	≤ 1.442	$\geq 1.566 \& \& \leq 2.5$
$d_{x y}$	<0.05	<0.10
d_{z}	<0.10	<0.20
$\sigma_{\text {ini }}$	<0.0104	<0.0353
$\|\Delta \eta\|$	<0.00255	<0.00501
$\|\Delta \phi\|$	<0.022	<0.0236
H / E	$<0.026+1.15 / E_{S C}+0.0324 \rho / E_{S C}$	$<0.0188+2.06 / E_{S C}+0.183 \rho / E_{S C}$
$I s o_{\text {rel }}$	$<0.0287+0.506 / p_{T}$	$<0.0445+0.963 / p_{T}$
$\|1 / E-1 / p\|$	<0.159	<0.0197
Missing hits	≤ 1	≤ 1
Pass conversion veto	Yes	Yes

Systematic source	$\ell v \gamma \gamma[\%]$	$\ell \ell \gamma \gamma[\%]$
Integrated luminosity	2	3
Pile-up	<1	1
Electron efficiencies	<1	1
Muon efficiencies	<1	1
Photon efficiencies	12	5
Jet-photon misid.	21	6
Electron-photon misid.	<1	-
$\mathrm{W} \gamma$ theoretical cross section $_{\mathrm{Z} \gamma \text { theoretical cross section }}$	3	<1
Other bkgs theoretical cross section	2	6
Simulated sample event count	8	<1

TEMP

Overview of CMS cross section results
$18 \mathrm{pb}^{-1}-138 \mathrm{fb}^{-1}(7,8,13 \mathrm{TeV})$

[motivations]?

Feynman diagrams for all the processes + some text?
https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsCombined/CMSCros
sSectionSMPSummaryBarChart.pdf + illuminare area di questo talk
non parlerò di VBS. Per il tempo parlerò solo di risultati a 13 TeV

Wyy and Zyy

- Wyy can be produced via a quartic coupling, while ZyY cannot (in the SM)
- The photons can also be produced by initial or final state radiation

- Major backgrounds estimated from data
- Electrons misidentified as photons - es $Z \gamma \rightarrow$ eeץ [eүy]
- Jets misidentified as photons: $C R=V+Y_{\text {Ioose }}$ ■ Subtract $Z Y \rightarrow$ eey (MC) before computing FR
- QCD: ty, tty, ttyp, VV \rightarrow from MC
pre fit

Wyy and Zyy - results

- Event selection: kinematic cuts

- Signal strength from fit to $p_{T}{ }^{\text {w }}$
- Uncertainty is dominated by systematics
- Mostly from data-driven background
- Estimated by inverting lepton isolation and applying same strategy

WYY and $Z_{Y Y}$ - aQGC

- Both Wyy and Zyy are affected by dimension-6 and dimension-8 operators
- Sensitivity to dim-6 is lower than diboson \rightarrow omitted
- Fit to the $\mathrm{p}_{\mathrm{T}}{ }^{\mathrm{yr}}$ distribution
- Effects mostly in the high energy tail

- Limits extracted for each operator with the others set to zero \rightarrow 1D limits
- Limits on $f_{T 5}$ and $f_{T 6}$ are comparable to results from $W_{\text {Yjj }}$
- $\mathrm{f}_{\mathrm{T} 0}, \mathrm{f}_{\mathrm{T} 5}, \mathrm{f}_{\mathrm{T} 8}$ and $\mathrm{f}_{\mathrm{T} 9}$ improve previous ATLAS analyses at 8 TeV
- $f_{T 9}$ improves previous CMS result at 13 TeV

	$\mathrm{W} \gamma \gamma\left(\mathrm{TeV}^{-4}\right)$		$\mathrm{Z} \gamma \gamma\left(\mathrm{TeV}^{-4}\right)$	
Parameter	Expected	Observed	Expected	Observed
$f_{\mathrm{M} 2} / \Lambda^{4}$	$[-57.3,57.1]$	$[-39.9,39.5]$	-	-
$f_{\mathrm{M} 3} / \Lambda^{4}$	$[-91.8,92.6]$	$[-63.8,65.0]$	-	-
$f_{\mathrm{T} 0} / \Lambda^{4}$	$[-1.86,1.86]$	$[-1.30,1.30]$	$[-4.86,4.66]$	$[-5.70,5.46]$
$f_{\mathrm{T} 1} / \Lambda^{4}$	$[-2.38,2.38]$	$[-1.70,1.66]$	$[-4.86,4.66]$	$[-5.70,5.46]$
$f_{\mathrm{T} 2} / \Lambda^{4}$	$[-5.16,5.16]$	$[-3.64,3.64]$	$[-9.72,9.32]$	$[-11.4,10.9]$
$f_{\mathrm{T} 5} / \Lambda^{4}$	$[-0.76,0.84]$	$[-0.52,0.60]$	$[-2.44,2.52]$	$[-2.92,2.92]$
$f_{\mathrm{T6}} / \Lambda^{4}$	$[-0.92,1.00]$	$[-0.60,0.68]$	$[-3.24,3.24]$	$[-3.80,3.88]$
$f_{\mathrm{T7} 7} / \Lambda^{4}$	$[-1.64,1.72]$	$[-1.16,1.16]$	$[-6.68,6.60]$	$[-7.88,7.72]$
$f_{\mathrm{T} 8} / \Lambda^{4}$	-	-	$[-0.90,0.94]$	$[-1.06,1.10]$
$f_{\mathrm{T} 9} / \Lambda^{4}$	-	-	$[-1.54,1.54]$	$[-1.82,1.82]$

- The Precision Proton Spectrometer (PPS) allows to measure forward (intact) protons
- Access to the full kinematics of the event!
- $100 \mathrm{fb}^{-1}$ of data (PPS in physics status)
- Search for pp \rightarrow pp VV \rightarrow pp jj, V = W, Z
- Search for VBs decays into single large jets

Backgrounds

- Main: QCD multi jet
- Z+jet, W+Jet, tt production
- Diffractive pilup is not well modelled \rightarrow data-driven

Protons

- multiRP \rightarrow better ξ resolution
- $0.05<\xi<\xi^{\max }$
- $180 \mathrm{GeV}<\mathrm{M}_{\mathrm{pp}}<1.55-2.1 \mathrm{TeV}$ \rightarrow lower bound by jet trigger

PPS Roman Pots containing Detectors

 TIT $\square \square \square \square$
(*) Designing Decorrelated Tagger. Goal: avoid mass sculpting. See arXiv:1603.00027

CMS-TOTEM Simulation Preliminary

Proton-jet matching

- $m(\mathrm{VV})=m(p p)$
$=$ In the
- $y(V V)=y(p p) \quad$ diamond
- Divide WW and ZZ with cut on: $\overline{\cos (\pi / 4)} * M_{\text {pruned }}^{\text {leading }}+\sin (\pi / 4) * M_{\text {pruned }}^{\text {subleading }}$

Pileup background

- Use 2D sideband in $m-y$ plane
- $\left|1-\mathrm{m}_{\mathrm{vv}} / \mathrm{m}_{\mathrm{pp}}\right|>1.0$
- $\left|y_{\mathrm{pp}}-y_{\mathrm{vv}}\right|>0.5$
- Note: both δ and o are inside
- and in the acoplanarity

CMS Preliminary 2018, $\mathrm{L}=52.9 \mathrm{fb}^{-1}$

ABCD method	$\mathrm{a}<0.01$	$\mathrm{a}>0.01$
in rectangle	A (SR)	B
out rectangle	C	D

$Z Z \rightarrow 4 \ell(l=e, \mu)$ ex \#3

- Produced mainly via qq t- and u-channel ($\sim 90 \%$) and gg \rightarrow loop (~ 10 \%)
- No tree-level contribution from TGC in SM \rightarrow probe aTGC
- Main background: nonprompt leptons
- Two CR in data with a Z + $\ell^{+} \ell^{-}$ where both ℓ pass a loose ID
- 2P2F: both fail tight ID
- 3P1F: one fails tight ID
- Measure lepton FR in CR with $Z+\ell_{\text {loose }}$ as $p\left(\ell_{\text {loose }} \rightarrow \ell_{\text {tight }}\right)$
- Scale each event in CRs by the lepton FR \rightarrow contribution in SR
- Rare backgrounds: ttZ, VVV \rightarrow MC

Variable	Cut
$\mathrm{p}_{\mathrm{T}}^{\ell 1}$	$>20 \mathrm{GeV}$
$\mathrm{p}_{\mathrm{T}}^{\mathrm{e} 2, \mu 2}$	$>12,10 \mathrm{GeV}$
$\mathrm{p}_{\mathrm{T}}^{\mathrm{e}, \mu,}$	$>7,5 \mathrm{GeV}$
$\left\|\eta_{\mathrm{e}, \mu}\right\|$	$<2.5,2.4 \mathrm{GeV}$
$\Delta R(\ell, \ell)$	>0.02
$\Delta R(\mathrm{e}, \mu)$	>0.05
$\mathrm{~m}(\ell \ell)$	$60<\mathrm{m}_{\ell \ell}<120 \mathrm{GeV}$
$\mathrm{m}\left(\ell \ell^{\prime}\right)$	$>4 \mathrm{GeV}$

$$
Z+l_{\text {loose }} \text { region }
$$

- $\left|m_{l \ell}-m_{z}\right|<10 \mathrm{Gev}$
- $\mathrm{p}_{\mathrm{T}}^{\text {miss }}<25 \mathrm{GeV}$
- $\mathrm{m}_{\mathrm{T}}\left(\ell_{3}, \mathrm{P}_{\mathrm{T}}^{\text {miss }}\right)<30 \mathrm{GeV}$

- Produced only by qq’ at tree level
- Sensitive to the WWZ TGC
- Sensitive to charge asymmetry

- Reducible bkg: tight-to-loose
- Irreducible bkg: MC (shape) + validation in CRs (norm)
- ZZ ($\sim 6 \%$ of yield in SR), ttZ and tZq ($\sim 3.2 \%$), X+ץ ($\sim 1.5 \%$)

$W^{+} W^{-} \rightarrow \ell^{+} \ell^{-} 2 v$

SMP-18-004

- Produced via qq annihilation (~95 \%), gg-induced loop ($\sim 5 \%$) and $\mathrm{H} \rightarrow$ WW (background)
- Signature: 2 isolated leptons and large p_{T} miss
- Main background processes: tt, DY and W+jets
- Lepton $\operatorname{FR}\left(\mathrm{p}_{\mathrm{T}}, \eta\right)$ is measured in QCD-enriched data
- Applied in CR with 1 passing and 1 failing lepton
- Two analysis: sequential cut (measure $\sigma_{\text {tot }} \sigma_{0 / i j^{\prime}}$ $\mathrm{d}_{0 \mathrm{j}} / \mathrm{dp}_{\mathrm{t}}^{\text {THR }}$) and Random Forest ($\sigma_{\text {tot }}, \mathrm{d} \sigma / \mathrm{dn}_{\mathrm{j}}$)

$W^{+} W^{-} \rightarrow \ell^{+} \ell^{-} 2 v$ - results [1]

Total cross section measurement with sequential analysis

Category		Signal strength	Cross section [pb]
0-jet	DF	1.054 ± 0.083	125.2 ± 9.9
0-jet	SF	1.01 ± 0.16	120 ± 19
1-jet	DF	0.93 ± 0.12	$110 \quad \pm 15$
1-jet	SF	0.76 ± 0.20	89 ± 24
0-jet \& 1-jet	DF	1.027 ± 0.071	122.0 ± 8.4
0-jet \& 1-jet	SF	0.89 ± 0.16	106 ± 19
0-jet \& 1-jet	DF \& SF	0.990 ± 0.057	117.6 ± 6.8

Fiducial cross section: two dressed e or μ in the event with $p_{T}>20$ GeV and $|\eta|<2.5, \mathrm{~m}_{\ell l}>20 \mathrm{GeV}, \mathrm{p}_{\mathrm{T}}{ }^{l l}>30 \mathrm{GeV}$ and $\mathrm{E}_{\mathrm{T}}{ }^{\text {miss }}>20 \mathrm{GeV}$

- Repeated for several pT thresholds for the jet veto

p_{T} threshold (GeV)	Signal strength	Cross section (pb)
25	1.091 ± 0.073	0.836 ± 0.056
30	1.054 ± 0.065	0.892 ± 0.055
35	1.020 ± 0.060	0.932 ± 0.055
45	0.993 ± 0.057	1.011 ± 0.058
60	0.985 ± 0.059	1.118 ± 0.067

Theoretical prediction:

$\sigma_{\text {tot }}{ }^{\text {NNLO }}=118.8 \pm 3.6 \mathrm{pb}$

$W^{+} W^{-} \rightarrow \ell^{+} \ell^{-} 2 v$ - results [2]

CMS

Differential cross section measurement

Limits on 3 Wilson coefficients

