





## Multiboson production in CMS

Alberto Mecca (University and INFN Torino) on behalf of the CMS Collaboration

Deep Inelastic Scattering 2022 - Santiago de Compostela 3 May 2022

### Multiboson production in CMS



- Many CMS analyses targeting multiboson final states
- Rare processes, high energies
- Di- and triboson production allow probing the EW symmetry breaking mechanism, in parallel to the study of the Higgs boson
- Triple and quartic gauge couplings are sensitive to BSM physics
  - Limits on new operators, often in the Effective Field Theories framework or in terms of anomalous quartic couplings
- Diboson production is in the precision regime
- Triboson production measured in increasingly more channels
- I will discuss analyses targeting inclusive diboson and triboson production, since Vector Boson Scattering is the focus of another talk

### $ZZ \rightarrow 4\ell \ (\ell = e, \mu)$

SMP-19-001

CMS

- Produced mainly via qq t- and u-channel (~ 90 %) and gg → loop (~ 10 %)
- No tree-level contribution from TGC in SM → probe aTGC
- Overall a very clean channel
  - Main background: nonprompt leptons → from data CRs
  - Rare backgrounds (from MC): ttZ, VVV

- Measurement of the fiducial cross section
- Total cross section
- Compare different MC generator predictions



$$\sigma_{fid}$$
 = 40.5 ± 0.7 (stat) ± 1.1 (syst) ± 0.7 (lumi)  
 $\sigma_{tot}$  = 17.4 ± 0.3 (stat) ± 0.5 (syst) ± 0.4 (theo) ± 0.3 (lumi)

 $\sqrt{s}$  [TeV]

### $ZZ \rightarrow 4\ell (\ell = e, \mu)$ - results

SMP-19-001

Differential cross sections for

$$\mathbf{m}_{\mathbf{ZZ}}, \, \mathbf{p}_{\mathsf{T}}^{\,\,\ell}, \, \mathbf{p}_{\mathsf{T}}^{\,\,\mathsf{Z}}, \, \mathbf{p}_{\mathsf{T}}^{\,\,\mathsf{ZZ}}, \, \Delta \phi(\mathsf{Z}_1, \mathsf{Z}_2), \, \Delta \mathsf{R}(\mathsf{Z}_1, \mathsf{Z}_2)$$

 Background correction and detector response unfolded with MC



- Limits from fit to the m<sub>77</sub> distribution
- Mostly high energy tail  $(m_{7Z} > 1300 \text{ GeV})$  affected
- 1D and 2D limits with all other coupling set to 0
  - $\circ$  CP-conserving  $(f_4^{\gamma}, f_4^{Z})$
  - $\circ$  CP-violating  $(f_5^{\gamma}, f_5^{Z})$



### $WZ \rightarrow 3\ell \nu$

SMP-20-014

- Produced only by qq' at tree level
- Sensitive to the WWZ TGC and to charge asymmetry  $A_{WZ}^{+-} = \frac{\sigma_{fid}(pp \to W^{+}Z)}{\sigma_{fid}(pp \to W^{-}Z)}$
- Nonprompt leptons: tight-to-loose
- Irreducible bkg: MC shape + normalization in CRs
  - $\circ$  ZZ (~6% of yield in SR), ttZ and tZq (~3.2%), X+ $\gamma$  (~1.5 %)





### $W^+W^- \rightarrow \ell^+\ell^- 2\nu$

SMP-18-004

- Produced via qq annihilation (~95 %), gg-induced loop (~5 %) and H → WW (background)
- Signature: 2 isolated leptons and large p<sub>T</sub><sup>miss</sup>
- Main background processes: tt, DY and W+jets
  - $\circ$  Lepton FR( $p_{\tau}$ ,  $\eta$ ) is measured in QCD-enriched data
  - Applied in CR with 1 passing and 1 failing lepton
- Two analysis: sequential cut  $(\sigma_{tot}, \sigma_{0/1j}, d\sigma_{0j}/dp_t^{THR})$  and Random Forest  $(\sigma_{tot}, d\sigma/dn_i)$





DYMVA: see arXiv:1806.05246

3 May 2022

### $W^+W^- \rightarrow \ell^+\ell^- 2\nu$ - results

SMP-18-004



 $\mathcal{O}_{WWW} = \frac{c_{WWW}}{\Lambda^2} W_{\mu\nu} W^{\nu\rho} W^{\cdot \mu}_{\rho},$ 

- Fiducial cross section (SEQ): Two e or  $\mu$  with  $p_{\tau}^{\ell} > 20$  GeV,  $|\eta^{\ell}| < 2.5$ ,  $m_{\ell\ell} > 20 \text{ GeV}$ ,  $p_T^{\ell\ell} > 30 \text{ GeV}$ ,  $E_T^{\text{miss}} > 20 \text{ GeV}$ , **0-1 jets** Change in 0-jets with p<sub>⊤</sub> threshold of vetoed jets
- **Total cross section** measurement with both analyses
- **Differential cross section** measurement in  $\mathbf{m}_{pp}$ ,  $\mathbf{p}_{T}^{\ell 1}$ ,  $\mathbf{p}_{T}^{\ell 2}$ ,



- Theoretical prediction: σ<sub>tot</sub> NNLO = 118.8 ± 3.6 pb  $\sigma_{\text{tot}}^{\text{Seq}} = 117.6 \pm 1.4 \text{ (stat)} \pm 5.5 \text{ (syst)} \pm 1.9 \text{ (theo)} \pm 3.2 \text{ (lumi) pb}$  $=17.6 \pm 6.8 \text{ pb}$ 
  - $\sigma_{\text{tot}}^{\text{RF}} = 131.4 \pm 1.3 \text{ (stat)} \pm 6.0 \text{ (syst)} \pm 5.1 \text{ (theo)} \pm 3.5 \text{ (lumi) pb}$  $=131.4 \pm 8.7 \text{ pb}$



### $W^{\pm}W^{\pm} \rightarrow e^{\pm}\mu^{\pm}/\mu^{\pm}\mu^{\pm} + 2\nu$ Double Parton Scattering

#### SMP-21-013

 $W^{\pm}$ 

 $a^{(p1)}$ 

 $a^{(p1)}$ 

 $\overline{q}'^{(p2)}$ 

 $\overline{a}'^{(p2)}$ 





- For single hard scattering  $\sigma^{SHS} = \sigma_{PDF} * \sigma_{parton}$ ;  $\sigma_{PDF}^{DPS}$  depends on two partons A simplified formula can be written:  $\sigma_{AB}^{DPS} = \frac{n}{2} \frac{\sigma_A \sigma_B}{\sigma_{eff}}$  n = 1 if A = B n = 2 otherwise
  - $\circ \sigma_{\text{eff}} \in (15, 26)$  mb if there is a Vector Boson, ~2.2 mb for heavy flavour
- SHS W<sup>±</sup>W<sup>±</sup> is mainly produced via VBS
  - suppressed by vetoing additional jets

|                                                                                             | Value                                                             | Significance (standard deviations) |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------|
| $\sigma_{\mathrm{DPSWW,exp}}^{\mathrm{PYTHIA}}$                                             | 1.92 pb                                                           | 5.4                                |
| $\sigma_{	ext{DPS WW, exp}}^{	ext{PYTHIA}}$ $\sigma_{	ext{DPS WW, exp}}^{	ext{factorized}}$ | 0.87 pb                                                           | 2.5                                |
| $\sigma_{ m DPSWW,obs}$                                                                     | $1.41 \pm 0.28  (\text{stat}) \pm 0.28  (\text{syst})  \text{pb}$ | 3.9                                |
| $\sigma_{ m eff}$                                                                           | $12.7^{+5.0}_{-2.9}\mathrm{mb}$                                   | _                                  |



- Main background: WZ
  - Nonprompt leptons
  - Also Wy, Zy, ZZ
- 4 regions: {++, -} x {eμ, μμ}
- Suppressed with BDTs
- Significance: 3.9σ
- $\sigma_{\rm eff} = 12.7^{+5.0}_{-2.9} \, \rm mb$

Alberto Mecca - DIS2022



### $W\gamma \rightarrow \ell \nu \gamma \quad (\ell = e, \mu)$

- $\sigma(C_{WWW}) = \sigma_{SM} + C_{WWW}\sigma_{int} + C_{WWW}^2 \sigma_{BSM}$
- "Radiation amplitude zero": at LO destructive interference
- SM-EFT have different helicity for ff→W<sub>T</sub>V<sub>T</sub>
- Use angular observables:  $\phi$
- Fiducial differential cross sections
- $\bullet$  Constraints on  $\mathcal{O}_{\mathrm{WWW}}$  using  $\mathbf{p}_{\mathrm{T}}^{\mathrm{Y}}$  and  $|\phi_{\mathrm{f}}|$











### VVV (V = W,Z) - strategy

SMP-19-014

```
• W^{\pm}W^{\pm}W^{\mp} \rightarrow \ell^{\pm}\nu \ell^{\pm}\nu qq' \rightarrow 2\ell^{\pm} 9 regions: {1J, m_{jj}-in, m_{jj}-out} x {ee, e\mu, \mu\mu} \rightarrow \ell^{\pm}\nu \ell^{\pm}\nu \ell^{\pm}\nu \rightarrow 3\ell^{\pm} 3 regions: 0, 1, 2 SFOS \rightarrow \ell^{\pm}\nu \ell^{\pm}\nu \ell^{\pm}\ell^{\mp} \rightarrow 4\ell^{\pm} 2 regions: BDT for ttZ, BDT for ZZ
```

1 region

- $\bullet \ \mathsf{W}^{\pm} \, \mathsf{Z} \, \mathsf{Z} \qquad \to \ \ell^{\pm} \nu \quad \ell^{\pm} \ell^{\mp} \, \ell^{\pm} \ell^{\mp} \, \to \mathbf{5} \, \ell^{\pm}$
- Z Z Z  $\rightarrow \ell^{\pm}\ell^{\mp}\ell^{\pm}\ell^{\mp}\ell^{\mp} \rightarrow 6\ell^{\pm}$  1 region
- Simultaneous fit with 4 signal strengths:
  - $\begin{array}{cccccc} \circ & \text{WWW} \rightarrow 2.5 \, \sigma & \circ & \text{WZZ} \rightarrow 1.6 \, \sigma \\ \circ & \text{WWZ} \rightarrow 3.5 \, \sigma & \circ & \text{ZZZ} \rightarrow 0.0 \, \sigma \end{array}$
- Combined fit for  $VVV \rightarrow 5.9\sigma$







- Wγγ can be produced via a quartic coupling, while Zγγ cannot (in the SM)
- The photons can also be produced by initial or final state radiation



- Major backgrounds estimated from data
  - $\circ$  Electrons misidentified as photons e.g.  $Z\gamma \to ee\gamma$  [ $e\gamma\gamma$ ]
  - **Jets** misidentified as photons:  $CR = V + \gamma_{loose}$ 
    - Subtract  $Z\gamma \rightarrow ee\gamma$  (MC) before computing FR
- QCD: tγ, ttγ, ttγγ, VVγ → from MC

- Event selection: kinematic cuts
- Systematics
  - Mostly from data-driven background
  - Estimated by inverting lepton isolation and applying same strategy







### Wyy and Zyy - results

SMP-19-013





Signal strength µ

### pWWp and pZZp

SMP-21-014

- The Precision Proton Spectrometer (PPS) allows to measure forward (intact) protons
- Access to the full kinematics of the event!
- 100 fb<sup>-1</sup> of data (PPS in physics status)
- Search for pp  $\rightarrow$  pp VV  $\rightarrow$  pp j j , V = W, Z
  - $\circ\;$  Search for VBs decays into single large jets



#### **Backgrounds**

- Main: QCD multi jet
- Z+jet, W+Jet, tt production
- Diffractive pilup is not well modelled → data-driven

#### **Protons**

- multiRP  $\rightarrow$  better  $\xi$  resolution
- $0.05 < \xi < \xi^{\text{max}}$  [depends on year]
  - 180 GeV < M<sub>pp</sub> < 1.55-2.1 TeV</li>
     → lower bound by jet trigger





#### **Proton-jet matching**

- m(VV) = m(pp) = In the
- y(VV) = y(pp) diamond
- In the arms one proton is correctly matched, the other comes from pileup
- Still considered signal

### pWWp and pZZp - results

SMP-21-014



#### Pileup background

- 2D sideband in m y plane
  - $\circ |1 m_{VV}/m_{nn}| > 1.0$
  - $|y_{pp} y_{VV}| > 0.5$
  - $\circ$  Both  $\delta$  and o are inside
- and in the acoplanarity  $a = |1 \Delta \phi_{ii}| < 0.01$



- Binned fit:  $\{2016/17/18\} \otimes \{WW / ZZ\} \otimes \{fully [\delta] / partial [o]\}$
- Limits to aQGC: first result on γγZZ
  - $\circ$  ~15 times better than Run1 on  $\gamma\gamma$  → WW without tagged protons
- Limits on contribution from high mass resonance

CMS-TOTEM Preliminary, L = 100.0 fb-1



$$\cos(\pi/4)*M_{pruned}^{leading} + \sin(\pi/4)*M_{pruned}^{subleading}$$





#### Fiducial cross section limits:

$$\sigma(pp \to pWWp)_{0.04 < \xi < 0.20, m > 1000 \text{ GeV}} < 67(53^{+34}_{-19}) \text{ fb}$$

$$\sigma(pp \to pZZp)_{0.04 < \xi < 0.20, m > 1000 \text{ GeV}} < 43(62^{+33}_{-20}) \text{ fb}$$

Summary



- Presented status of multiboson @CMS
- Diboson: precision era
  - Reach high precision → NNLO
  - Good agreement with MC predictions
- Triboson:
  - Can see (some) processes
  - Still much more to discover
- Stay tuned for Run3 and beyond!



### References diboson [1]



- The CMS collaboration, "Measurement of W<sup>±</sup>γ differential cross sections in proton-proton collisions at √s = 13 TeV and effective field theory constraints", Phys. Rev. D 105 (2022) 052003, 9 March 2022, doi:10.1103/PhysRevD.105.052003

  SMP-20-005
- The CMS collaboration, "Measurement of the inclusive and differential WZ production cross sections, polarization angles, and triple gauge couplings in pp collisions at √s = 13 TeV"

SMP-20-014

• The CMS collaboration, "Measurements of the electroweak diboson production cross sections in proton-proton collisions at √s= 5.02 TeV using leptonic decays"

SMP-20-012

- The CMS collaboration, "Measurement of Wγ production cross section in proton-proton collisions at √s = 13
   TeV and constraints on effective field theory coefficients"

  SMP-19-002
- Measurements of pp → ZZ production cross sections and constraints on anomalous triple gauge couplings at √s = 13 TeV"

SMP-19-001

### References diboson [2]



The CMS Collaboration, "W+W- boson pair production in proton-proton collisions at √s = 13 TeV"

SMP-18-004

 The CMS Collaboration, "Evidence for WW production from double-parton interactions in proton-proton collisions at √s = 13 TeV"

SMP-18-015

- The CMS Collaboration, "Search for exclusive  $\gamma\gamma \to WW$  and  $\gamma\gamma \to ZZ$  production in final states with jets and forward protons", CMS-PAS-SMP-21-014, March 2022 SMP-21-014
- The CMS Collaboration, "Search for anomalous triple gauge couplings in WW and WZ production in lepton +
  jet events in proton-proton collisions at √s = 13 TeV"

  SMP-18-008
- "Measurements of the pp→WZ inclusive and differential production cross section and constraints on charged anomalous triple gauge couplings at √s = 13 TeV"

  SMP-18-002

### References triboson



- The CMS collaboration, "Observation of the production of three massive gauge bosons at  $\sqrt{s} = 13 \text{ TeV}$ ", Phys.
  - Rev. Lett. 125 (2020) 151802, 5 Oct 2020, 10.1103/PhysRevLett.125.151802

SMP-19-014

• The CMS collaboration, "Measurements of the pp  $\rightarrow$  W<sup>±</sup>yy and pp  $\rightarrow$  Zyy cross sections at  $\sqrt{s}$  = 13 TeV and limits on anomalous quartic gauge couplings", J. High Energ. Phys. 2021, 174 (2021), 21 Oct 2021, doi:10.1007/jhep10(2021)174

Wvv.Zvv

SMP-19-013

• The CMS Collaboration, "Search for the production of  $W^{\pm}W^{\pm}W^{\mp}$  events at  $\sqrt{s}$  = 13 TeV", Phys. Rev. D 100 (2019) 012004, 26 Jul 2019, doi:10.1103/physrevd.100.012004

**WWW** 

SMP-17-013

• The CMS Collaboration, "Measurements of the pp $\rightarrow$ Wyy and pp $\rightarrow$ Zyy cross sections and limits on anomalous quartic gauge couplings at √s = 8 TeV", J. High Energy Phys. 10 (2017) 072, 11 Oct 2017, 8 TeV Wγγ, Ζγγ doi:10.1007/jhep10(2017)072

SMP-15-008

• The CMS Collaboration, "A search for WWy and WZy production and constraints on anomalous quartic gauge couplings in pp collisions at  $\sqrt{s} = 8 \text{ TeV}''$ , Phys. Rev. D 90 (2014) 032008, 25 Aug 2014, SMP-13-009 doi:10.1103/PhysRevD.90.032008 8 TeV WWy, WZy

# Backup

### The CMS Detector



$$\eta = -\ln(\tan(\theta/2))$$

$$\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \varphi)^2}$$



### Cross section summary



| Process                 | Fiducial cross section | Total cross section |
|-------------------------|------------------------|---------------------|
| $ZZ \rightarrow 4\ell$  | 40.5 ± 1.5 fb          | 17.4 ± 0.8 pb       |
| WZ→3ℓ v                 | 299 ± 11 fb            | 50.6 ± 2.1 pb       |
| W⁺W <sup>-</sup> →2ℓ 2v | 1 592 ± 87 fb          | 117.6 ± 6.8 pb      |
| WW→2ℓ 2v DPS            |                        | 1.41 ± 0.40 pb      |
| Wγ                      | 15 580 ± 750 fb        |                     |

| Process | Theoretical cross section (NLO) | σxBR    | Expected events<br>for 137 fb <sup>-1</sup> |
|---------|---------------------------------|---------|---------------------------------------------|
| WWW     | 509 fb                          | 54.0 fb | 7 400                                       |
| WWZ     | 354 fb                          | 4.12 fb | 560                                         |
| WZZ     | 91.6 fb                         | 0.36 fb | 50                                          |
| ZZZ     | 37.1 fb                         | 0.05 fb | 6.9                                         |

### $ZZ \rightarrow 4\ell$

### SMP-19-001

| Uncertainty                | Range of values           |                       | Expected 95% CL   | Observed 95% CL    |
|----------------------------|---------------------------|-----------------------|-------------------|--------------------|
| Lepton efficiency          | 2–5%                      | aTGC parameter        | $\times 10^{-4}$  | $\times 10^{-4}$   |
| Trigger efficiency         | 1–2%                      | $f_{f 4}^Z$           | -8.8;8.3          | -6.6;6.0           |
| Background                 | 0.6–1.3%                  | $f_5^{Z}$             | -8.0; 9.9         | -5.5 ; 7.5         |
| Pileup                     | 1%                        | $f_4^{\gamma}$        | -9.9 ; 9.5        | <i>-</i> 7.8 ; 7.1 |
| $\mu_{\rm R}, \mu_{\rm F}$ | 1%                        | $f_5^{\gamma}$        | -9.2;9.8          | -6.8 ; 7.5         |
| PDF                        | 1%                        | EFT parameter         | $\text{TeV}^{-4}$ | ${ m TeV}^{-4}$    |
|                            |                           | $C_{ m BW}/\Lambda^4$ | -3.1;3.3          | -2.3; 2.5          |
| NNLO/NLO corrections       | 1%                        | $C_{ m WW}/\Lambda^4$ | -1.7 ; 1.6        | -1.4;1.2           |
| Integrated luminosity      | 2.5% (2016), 2.3% (2017), | $C_{ m BW}/\Lambda^4$ | -1.8; 1.9         | -1.4;1.3           |
|                            | 2.5% (2018)               | $C_{ m BB}/\Lambda^4$ | -1.6 ; 1.6        | -1.2;1.2           |

| Year     | Fiducial cross section, fb                                                                    | Year     | Total cross section, pb                                                                                                |
|----------|-----------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------|
| 2016     | $41.6 \pm 1.4  (\mathrm{stat}) \pm 1.3  (\mathrm{syst})^{+1.1}_{-1.0}  (\mathrm{lumi})$       | 2016     | $17.9 \pm 0.6  (\mathrm{stat})_{-0.5}^{+0.6}  (\mathrm{syst}) \pm 0.4  (\mathrm{theo})_{-0.4}^{+0.5}  (\mathrm{lumi})$ |
| 2017     | $39.2 \pm 1.2  (\mathrm{stat})^{+1.3}_{-1.2}  (\mathrm{syst})^{+1.0}_{-0.9}  (\mathrm{lumi})$ | 2017     | $16.8 \pm 0.5  (\mathrm{stat})_{-0.5}^{+0.6}  (\mathrm{syst}) \pm 0.4  (\mathrm{theo}) \pm 0.4  (\mathrm{lumi})$       |
| 2018     | $39.3 \pm 1.0  (\mathrm{stat})_{-1.1}^{+1.3}  (\mathrm{syst}) \pm 1.0  (\mathrm{lumi})$       | 2018     | $16.9 \pm 0.4  (\mathrm{stat}) \pm 0.5  (\mathrm{syst}) \pm 0.4  (\mathrm{theo}) \pm 0.4  (\mathrm{lumi})$             |
| Combined | $40.1 \pm 0.7  ({ m stat}) \pm 1.1  ({ m syst}) \pm 0.7  ({ m lumi})$                         | Combined | $17.2 \pm 0.3  ({ m stat}) \pm 0.5  ({ m syst}) \pm 0.4  ({ m theo}) \pm 0.3  ({ m lumi})$                             |

### $ZZ \rightarrow 4\ell$

### SMP-19-001







#### Matrix

- NNLO fixed order
- Differential predictions@NNLO QCD, NLO EW



Alberto Mecca - DIS2022

### SMP-20-014

#### Fiducial region for cross section:

- 3ℓ (no τ decay)
- FRS-corrected for  $\Delta R(\ell, \gamma) < 0.1$
- pT(ℓ<sub>Z1</sub>) > 25 GeV
- pT(ℓ<sub>72</sub>) > 10 GeV
- pT(\(\ell\_{\text{W}}\)) > 25 GeV
- $\circ$  **60** GeV < m( $\ell_{Z1}$ ,  $\ell_{Z2}$ ) < **120** GeV
- m(ℓℓ<sub>OSSF</sub>) > 4 GeV
- o m(3ℓ) > 100 GeV
- Free parameters: WZ, ZZ, ttZ, tZq and X+v

#### b-tag WP

Mistag q-g jets: 0.1 %

Efficiency b-jets: 40 - 60 %

|                           |           | Systematics |           |                      |                 |
|---------------------------|-----------|-------------|-----------|----------------------|-----------------|
| Source                    | 2016 %    | 2017 %      | 2018 %    | Correlation scheme   | Processes       |
| Electron efficiency       | 0-3.3     | 0-3.0       | 0-2.8     | Partially correlated | All MC          |
| Muon efficiency           | 0-2.4     | 0-2.1       | 0-2.0     | Partially correlated | All MC          |
| Electron energy scale     | 0–5       | 0–5         | 0–5       | Correlated           | All MC          |
| Muon energy scale         | 0-5       | 0–5         | 0–5       | Correlated           | All MC          |
| Trigger efficiency        | -1.0/+0.6 | -0.7/+0.6   | -0.7/+0.6 | Partially correlated | All MC          |
| Jet energy scale          | 0.9       | 0.7         | 1.1       | Partially correlated | All MC          |
| btagging                  | 1.0       | 0.7         | 0.9       | Correlated           | All MC          |
| bmistagging               | 0.5       | 0.4         | 0.3       | Correlated           | All MC          |
| Pileup                    | 0.9       | 0.8         | 0.8       | Correlated           | All MC          |
| ISR                       | 0.2 - 20  | 0.2 - 20    | 0.2 - 20  | Correlated           | WZ              |
| Nonprompt shape           | 5-50      | 5-50        | 5-50      | Correlated           | Nonprompt       |
| Nonprompt norm.           | 30        | 30          | 30        | Correlated           | Nonprompt       |
| VVV norm.                 | 50        | 50          | 50        | Correlated           | VVV             |
| VH norm.                  | 25        | 25          | 25        | Correlated           | VH              |
| WZ EWK norm.              | 20        | 20          | 20        | Correlated           | WZ EWK          |
| ZZ                        | Free      | Free        | Free      | Correlated           | ZZ              |
| tīZ norm.                 | Free      | Free        | Free      | Correlated           | tīX             |
| tZq norm.                 | Free      | Free        | Free      | Correlated           | tZq             |
| $X\gamma$ norm.           | Free      | Free        | Free      | Correlated           | $\chi_{\gamma}$ |
| Integrated luminosity     | 1.2       | 2.3         | 2.5       | Partially correlated | All MC          |
| Statistical uncertainties | By bin    | By bin      | By bin    | Uncorrelated         | All MC          |
| Theoretical (PDF + scale) | 0.9       | 0.9         | 0.9       | Correlated           | WZ              |

### $WZ \rightarrow 3\ell \nu$

### SMP-20-014



### $W^+W^- \rightarrow \ell^+\ell^- 2\nu$ - Radom forest SMP-18-004

- Each tree uses a subset of the variables → reduces overfitting
- RF produces a purer SR, but it's more sensitive to p<sub>T</sub><sup>WW</sup>
- $\sigma_{tot}^{RF} = 131.4 \pm 1.3 \text{ (stat)} \pm 6.0 \text{ (syst)} \pm 5.1 \text{ (theo)} \pm 3.5 \text{ (lumi)} \text{ pb}$

#### Preselection

| 1 10001001                                                                                            |              | <u></u>                                          |
|-------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------|
| Quantity                                                                                              | Random Fores | <del>st</del>                                    |
|                                                                                                       | DF SF        |                                                  |
| Number of leptons                                                                                     | Strictly 2   | CMS 35.9 fb <sup>-1</sup> (13 TeV)               |
| Lepton charges                                                                                        | Opposite     | tī d Data                                        |
| $p_{ m T}^{\ell{ m max}}$                                                                             | >25          | Nonprompt M Pred. unc.                           |
| $p_{ m T}^{\ell{ m min}}$                                                                             | >20          | Nonprompt Pred. unc.  Wγ* Drell-Yan  H(125) VZ   |
| $m_{\ell\ell}$                                                                                        | >30 >30      | ± H(125) VZ                                      |
| Additional leptons                                                                                    | 0            | H(125)<br>WW                                     |
| $ m_{\ell\ell}-m_Z $                                                                                  | — >15        | <b>近10</b> <sup>*</sup> <b>10</b> *              |
| $\mathcal{P}_{	ext{T}}^{\ell\ell}$                                                                    |              |                                                  |
| $p_{ m T}^{ m miss}$                                                                                  |              | 103                                              |
| $p_{\mathrm{T}}^{\mathrm{miss},\mathrm{proj}}$ , $p_{\mathrm{T}}^{\mathrm{miss},\mathrm{track}}$ proj |              |                                                  |
| Number of jets                                                                                        |              | 102                                              |
| Number of b-tagged jets                                                                               | 0            | ₩ 1.2                                            |
| DYMVA score                                                                                           |              | <u>0</u> 1.0 ••••••••••••••••••••••••••••••••••• |
| Drell–Yan RF score $S_{\mathrm{DY}}$                                                                  | >0.96        | 1.0                                              |
| tt RF score $S_{ m tt}$                                                                               | >0.6         | 0.0 0.2 0.4 0.6 0.8 1.0                          |
|                                                                                                       |              | Drell-Yan random forest score                    |





### $W^+W^- \rightarrow \ell^+\ell^- 2\nu$

### SMP-18-004

| Signal strength   | Cross section (pb)                                                                                                       |
|-------------------|--------------------------------------------------------------------------------------------------------------------------|
|                   | $0.836 \pm 0.056$                                                                                                        |
|                   | $0.892 \pm 0.055$                                                                                                        |
|                   | $0.932 \pm 0.055$<br>$0.932 \pm 0.055$                                                                                   |
|                   |                                                                                                                          |
|                   | $1.011 \pm 0.058$                                                                                                        |
| $0.985 \pm 0.059$ | $1.118 \pm 0.067$                                                                                                        |
|                   | Signal strength<br>$1.091 \pm 0.073$<br>$1.054 \pm 0.065$<br>$1.020 \pm 0.060$<br>$0.993 \pm 0.057$<br>$0.985 \pm 0.059$ |

| Number of jets | 0                 | 1                 | $\geq 2$          |
|----------------|-------------------|-------------------|-------------------|
| Efficiency     | $0.555 \pm 0.003$ | $0.448 \pm 0.004$ | $0.290 \pm 0.004$ |

| Number of jets   | 0                           | 1                           | $\geq 2$                    |
|------------------|-----------------------------|-----------------------------|-----------------------------|
| Before unfolding | $0.795 \pm 0.007 \pm 0.053$ | $0.180 \pm 0.006 \pm 0.039$ | $0.025 \pm 0.005 \pm 0.018$ |
| After unfolding  | $0.773 \pm 0.008 \pm 0.075$ | $0.193 \pm 0.007 \pm 0.043$ | $0.034 \pm 0.006 \pm 0.033$ |
| Predicted        | $0.677 \pm 0.007 \pm 0.058$ | $0.248 \pm 0.007 \pm 0.033$ | $0.075 \pm 0.006 \pm 0.026$ |

| Coefficients            | 68% confid        | ence interval | 95% confidence interval |             |  |
|-------------------------|-------------------|---------------|-------------------------|-------------|--|
| $(\text{TeV}^{-2})$     | expected observed |               | expected                | observed    |  |
| $c_{\rm WWW}/\Lambda^2$ | [-1.8, 1.8]       | [-0.93, 0.99] | [-2.7, 2.7]             | [-1.8, 1.8] |  |
| $c_{\rm W}/\Lambda^2$   | [-3.7, 2.7]       | [-2.0, 1.3]   | [-5.3, 4.2]             | [-3.6, 2.8] |  |
| $c_B/\Lambda^2$         | [-9.4, 8.4]       | [-5.1, 4.3]   | [-14, 13]               | [-9.4, 8.5] |  |



### $W^+W^- \rightarrow \ell^+\ell^- 2\nu$

### SMP-18-004

#### Event yields in the SR

| Process                             |                | Sequent        | Random         | Forest         |                |                |
|-------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|
|                                     | DF             |                |                | SF             |                | SF             |
|                                     | 0-jet          | 1-jet          | 0-jet          | 1 <i>-</i> jet | all jet mul    | tiplicities    |
| Top quark                           | $2110\pm110$   | $5000\pm120$   | $1202 \pm 66$  | $2211 \pm 69$  | $3450 \pm 340$ | $830 \pm 82$   |
| Drell–Yan                           | $129\pm10$     | $498 \pm 38$   | $1230\pm260$   | $285 \pm 86$   | $1360\pm130$   | $692 \pm 72$   |
| VZ                                  | $227\pm13$     | $270\pm12$     | $192\pm12$     | $110 \pm 7$    | $279 \pm 29$   | $139 \pm 10$   |
| VVV                                 | $11\pm1$       | $29 \pm 2$     | $4\pm1$        | $6\pm1$        | $13\pm4$       | $3\pm 2$       |
| $H \to W^+W^-$                      | $269 \pm 41$   | $150 \pm 25$   | $50 \pm 2$     | $27\pm1$       | $241\pm26$     | $90 \pm 10$    |
| $\mathrm{W}\gamma^{(*)}$            | $147\pm17$     | $136 \pm 13$   | $123 \pm 5$    | $58 \pm 6$     | $305 \pm 88$   | $20 \pm 6$     |
| Nonprompt leptons                   | $980 \pm 230$  | $550\pm120$    | $153 \pm 39$   | $127 \pm 32$   | $940 \pm 300$  | $183 \pm 59$   |
| Total background                    | $3870 \pm 260$ | $6640\pm180$   | $2950 \pm 270$ | $2820\pm120$   |                |                |
|                                     | 10510          | $\pm 310$      | $5780 \pm 300$ |                | $6600 \pm 480$ | $1960\pm120$   |
| $q\overline{q}  ightarrow W^+W^-$   | $6430 \pm 250$ | $2530\pm140$   | $2500\pm180$   | $1018\pm71$    | $12070\pm770$  | $2820\pm180$   |
| $gg 	o W^+W^-$                      | $521 \pm 66$   | $291 \pm 38$   | $228\pm32$     | $117\pm15$     | $693 \pm 44$   | $276 \pm 17$   |
| Total W <sup>+</sup> W <sup>−</sup> | $6950 \pm 260$ | $2820\pm150$   | $2730\pm190$   | $1136\pm72$    |                |                |
|                                     | 9780           | $\pm 300$      | $3860 \pm 200$ |                | $12770\pm820$  | $3100 \pm 200$ |
| Total yield                         | $10820\pm360$  | $9460 \pm 240$ | $5680 \pm 330$ | $3960 \pm 360$ |                |                |
|                                     | 20 280         | $\pm430$       | $9640 \pm 490$ |                | $19360\pm950$  | $5060 \pm 240$ |
| Purity                              | 0.64           | 0.30           | 0.48           | 0.29           |                |                |
|                                     | 0.4            | .8             | 0.4            | 10             | 0.66           | 0.61           |
| Observed                            | 10866          | 9404           | 5690           | 3914           | 19418          | 5210           |

#### Features used

| Feature                                                        | Classifier   |              |  |  |
|----------------------------------------------------------------|--------------|--------------|--|--|
|                                                                | Drell–Yan    | Top quark    |  |  |
| Lepton flavor                                                  | ✓            |              |  |  |
| Number of jets                                                 |              | $\checkmark$ |  |  |
| $p_{\mathrm{T}}^{\ell\mathrm{min}}$                            | $\checkmark$ |              |  |  |
| $p_{\mathrm{T}}^{\mathrm{miss}}$                               | $\checkmark$ | $\checkmark$ |  |  |
| $p_{\mathrm{T}}^{\mathrm{miss,proj}}$                          | $\checkmark$ |              |  |  |
| $p_{	ext{T}}^{	ext{miss,proj}}  otag \ p_{	ext{T}}^{\ell\ell}$ | $\checkmark$ | $\checkmark$ |  |  |
| $m_{\ell\ell}$                                                 | $\checkmark$ |              |  |  |
| $m_{\ell\ell p_{ m T}^{ m miss}}$                              | $\checkmark$ |              |  |  |
| $\Delta\phi_{\ell\ell p_{	ext{	iny T}}^{	ext{miss}}}$          | $\checkmark$ | $\checkmark$ |  |  |
| $\Delta\phi_{\ell m J}$                                        |              | $\checkmark$ |  |  |
| $\Delta\phi_{p_{ m T}^{ m miss} m J}$                          |              | $\checkmark$ |  |  |
| $\Delta\phi_{\ell\ell}$                                        | $\checkmark$ |              |  |  |
| $H_{ m T}$                                                     |              | $\checkmark$ |  |  |
| Recoil                                                         | $\checkmark$ | $\checkmark$ |  |  |

### $W\gamma \rightarrow \ell \nu \gamma \quad (\ell = e, \mu)$

#### **Backgrounds**

- Prompt  $\ell$ + $\gamma$ :  $\mathbb{Z}_{\gamma}$ ,  $\mathbb{V}_{\gamma}$  (V=W,Z)  $\rightarrow$  MC
- Photon conversion  $(y \rightarrow ee) \rightarrow MC$
- Electrons faking photons → MC template, normalization from fit to m<sub>ℓv</sub>
- Nonprompt leptons (photons):
   data-driven from dijet (W+jets) CR
   Measurement of the total cross
   section:
- $\sigma = 15.58 \pm 0.05$  (stat)  $\pm 0.73$  (syst)  $\pm 0.15$  (theo) pb =  $15.58 \pm 0.75$  pb
- $\sigma_{MadGraph} = 15.4 \pm 1.2 \text{ (scale)} \pm 0.1 \text{ (PDF) pb}$
- $\sigma_{Powheq}$  = 22.4 ± 3.2 (scale) ± 0.1 (PDF) pb





Pileup

◆ Data

e-induced γ
Double nonprompt

Nonprompt lepton
Nonprompt photon

SMP-19-002

- Probe WWy coupling ightarrow limits on EFT dimension 6  $\mathcal{O}_{\mathrm{WWW}}$ 
  - Fit to photon p<sub>T</sub> → mostly high energy bin (> 900 GeV)

| Coefficient                    | Exp. lower | Exp. upper | Obs. lower | Obs. upp |
|--------------------------------|------------|------------|------------|----------|
| $c_{WWW}/\Lambda^2$            | -0.85      | 0.87       | -0.90      | 0.91     |
| $c_B/\Lambda^2$                | -46        | 45         | -40        | 41       |
| $c_{\overline{W}WW}/\Lambda^2$ | -0.43      | 0.43       | -0.45      | 0.45     |
| $c_{\overline{W}}/\Lambda^2$   | -23        | 22         | -20        | 20       |
|                                |            |            |            |          |



### $Wy \rightarrow \ell \nu \gamma \quad (\ell = e, \mu)$

### SMP-20-005

$$\eta^{
u} = \eta^{\ell} \pm \ln \left[ 1 + \Delta \sqrt{2 + \Delta^2} + \Delta^2 \right]$$

$$\Delta = \sqrt{rac{m_{
m W}^2 - m_{
m T}^2}{2p_{
m T}^\ell p_{
m T}^
u}}$$



#### Off-diagonal = wrong sign for $p_{7}(v)$

$$\phi_f = \begin{cases} -(\pi+\phi), & \text{for } \phi < -rac{\pi}{2}; \\ \phi, & \text{for } |\phi| < rac{\pi}{2}; \\ \pi-\phi, & \text{for } \phi > rac{\pi}{2}. \end{cases}$$

#### Fiducial region

- $p_T^{\ell} > 30 \text{ GeV}, |\eta^{\ell}| < 2.5$
- p<sub>T</sub> > 30 GeV, |η<sup>γ</sup>| < 2.5</li>
   p<sub>T</sub> miss > 40 GeV
- $\Delta R(\ell, \gamma) > 0.7$

| Uncertainty                                        | Affects      | Corr.        | Relative effect on expected yield |  |  |
|----------------------------------------------------|--------------|--------------|-----------------------------------|--|--|
|                                                    | shape        | years        |                                   |  |  |
|                                                    | Experim      | iental       |                                   |  |  |
| Integrated luminosity                              | _            | Partial      | 1.6%                              |  |  |
| Pileup modeling                                    | $\checkmark$ | $\checkmark$ | 0.2–3.1%                          |  |  |
| L1 trigger                                         | $\checkmark$ | $\checkmark$ | 0.3–1.1%                          |  |  |
| Electron ID                                        | $\checkmark$ | $\checkmark$ | 0.7–2.8%                          |  |  |
| Electron ID ( $p_{\rm T}^{\rm e} > 200{\rm GeV}$ ) | $\checkmark$ |              | 0.1–1.2%                          |  |  |
| Electron trigger                                   | _            | _            | 0.5%                              |  |  |
| Muon ID (stat)                                     | $\checkmark$ | _            | 0.1–0.6%                          |  |  |
| Muon ID (syst)                                     | $\checkmark$ | $\checkmark$ | 0.2-0.7%                          |  |  |
| Muon trigger                                       | $\checkmark$ | _            | 0.1–0.7%                          |  |  |
| Photon ID                                          | $\checkmark$ | $\checkmark$ | 0.6-6.0%                          |  |  |
| Photon ID ( $p_{\rm T}^{\gamma} > 200{ m GeV}$ )   | $\checkmark$ |              | 2.1–4.7%                          |  |  |
| Photon ID (high $p_T$ extrapolation)               | $\checkmark$ |              | Typically 3.0–9.0%, max. 14%      |  |  |
| Photon (e veto)                                    | _            | _            | 1%                                |  |  |
| Photon energy scale                                | $\checkmark$ | $\checkmark$ | Typically 0.1–4.8%, max. 13%      |  |  |
| Jet energy scale                                   | $\checkmark$ | _            | 1–4%                              |  |  |
| $p_{\mathrm{T}}^{\mathrm{miss}}$ scale             | $\checkmark$ | Partial      | 0.1–10.1%                         |  |  |
| $\mathrm{e}  ightarrow \gamma$ misidentification   | $\checkmark$ | _            | Typically 6.7–18%, max. 25%       |  |  |
| Jet $ ightarrow \gamma$ misidentification          | $\checkmark$ |              | 10–45%                            |  |  |
| Misidentified e                                    | $\checkmark$ | _            | Typically 13–36%, max. 75%        |  |  |
| Misidentified $\mu$                                | $\checkmark$ | _            | Typically 16–42%, max. 70%        |  |  |
| Theoretical                                        |              |              |                                   |  |  |
| $\gamma$ acceptance (scale)                        | $\checkmark$ | $\checkmark$ | 0.3–1.7%                          |  |  |
| $\gamma$ acceptance (PDF)                          | $\checkmark$ | $\checkmark$ | Typically 0.5–2.2%, max. 7.6%     |  |  |
| $\gamma$ out-of-acceptance (scale)                 | $\checkmark$ | $\checkmark$ | 5.2–12%                           |  |  |
| $\gamma$ parton shower modeling                    | $\checkmark$ | $\checkmark$ | 0.2–1.3%                          |  |  |
| Background normalization (scale)                   | _            | $\checkmark$ | 2.0–16%                           |  |  |
| Background normalization (PDF)                     | _            | ✓            | 4.2–4.8%                          |  |  |

### $W\gamma \rightarrow \ell \nu \gamma \quad (\ell = e, \mu)$

### SMP-20-005



31

| $\gamma$ him (CoV)                  | $0 \leq  \phi_f $ | $  < \pi/6  $        | $\pi/6 \le$       | $ \phi_f  < \pi/3$   | $\pi/3 \leq$      | $ \phi_f  < \pi/2$ |
|-------------------------------------|-------------------|----------------------|-------------------|----------------------|-------------------|--------------------|
| $p_{\mathrm{T}}^{\gamma}$ bin (GeV) | $\mu^{ m int}$    | $\mu^{\mathrm{BSM}}$ | $\mu^{	ext{int}}$ | $\mu^{\mathrm{BSM}}$ | $\mu^{	ext{int}}$ | $\mu^{ m BSM}$     |
| 150–200                             | -0.19             | 0.52                 | 0.03              | 0.50                 | 0.23              | 0.44               |
| 200-300                             | -0.38             | 2.5                  | 0.02              | 2.1                  | 0.43              | 1.9                |
| 300-500                             | -0.95             | 10.7                 | 0.06              | 10.3                 | 1.0               | 11.0               |
| 500-800                             | -2.2              | 83.0                 | 0.07              | 82.5                 | 2.4               | 81.6               |
| 800-1500                            | -4.9              | 688.5                | 0.02              | 651.7                | 4.9               | 646.2              |





### WW+pp and ZZ+pp

SMP-21-014

# CMS

#### **Jets**

- $p_T^j > 200 \text{ GeV}$ ,  $|\eta_i| < 2.5$
- m<sub>i</sub> > 1126 GeV (trigger)
- $|\Delta \eta_{ii}| < 1.3$

32

- acoplanarity:
   a = |1 Δφ<sub>...</sub>| < 0.01</li>
- $p_T^{j1}/p_T^{j2} < 1.3$
- $\tau_{21}^{DDT} < 0.75$  (\*)

(\*) Designing Decorrelated Tagger. Goal: avoid mass sculpting. See <u>arXiv:1603.00027</u>

| ABCD method   | a < 0.01 | a > 0.01 |
|---------------|----------|----------|
| in rectangle  | A (SR)   | В        |
| out rectangle | С        | D        |

$$N_{BKG}^{A} = N^{B} * N^{C} / N^{D}$$









### SMP-19-014

#### Selection in the 2I and 3I regions

| Features                              |                                                                                               |         | Selections                                  |  |
|---------------------------------------|-----------------------------------------------------------------------------------------------|---------|---------------------------------------------|--|
|                                       | $SS + \geq 2j$                                                                                | SS + 1j | $3\ell$                                     |  |
| Triggers                              | Select events passing dilepton triggers                                                       |         |                                             |  |
| Number of leptons                     | Select events with 2 (3) leptons passing SS-ID (3 $\ell$ -ID) for SS (3 $\ell$ ) final states |         |                                             |  |
| Number of leptons                     | Select events with 2 (3) leptons passing veto-ID for SS (3 $\ell$ ) final states              |         |                                             |  |
| Isolated tracks                       | No additional isolated tracks —                                                               |         |                                             |  |
| b-tagging                             | no b-tagged jets and soft b-tag objects                                                       |         |                                             |  |
| Jets                                  | ≥2 jets                                                                                       | 1 jet   | ≤1 jet                                      |  |
| $m_{\rm JJ}$ (leading jets)           | <500 GeV                                                                                      |         | _                                           |  |
| $\Delta \eta_{\rm II}$ (leading jets) | <2.5                                                                                          |         | _                                           |  |
| $m_{\ell\ell}$                        | >20 GeV                                                                                       |         | _                                           |  |
| $m_{\ell\ell}$                        | $ m_{\ell\ell} - m_{\rm Z}  > 20 {\rm GeV} {\rm if} {\rm e}^{\pm}{\rm e}^{\pm}$               |         | _                                           |  |
| $m_{ m SFOS}$                         | _                                                                                             | _       | $m_{\rm SFOS} > 20{\rm GeV}$                |  |
| $m_{ m SFOS}$                         | _                                                                                             | _       | $ m_{\rm SFOS} - m_{\rm Z}  > 20 {\rm GeV}$ |  |
| $m_{\ell\ell\ell}$                    | _                                                                                             | _       | $ m_{\ell\ell\ell} - m_Z  > 10 \text{GeV}$  |  |

### VVV (V = W,Z) - strategy

SMP-19-014

- $W^{\pm}W^{\pm}W^{\mp}$   $\rightarrow \ell^{\pm}\nu \quad qq' \rightarrow 2\ell^{\pm}$  9 regions: {1J, m<sub>ij</sub>-in, m<sub>jj</sub>-out} x {ee, e $\mu$ ,  $\mu\mu$ } • //  $\rightarrow \ell^{\pm}\nu \quad \ell^{\pm}\nu \quad \rightarrow 3\ell^{\pm}$  3 regions: 0, 1, 2 SFOS •  $W^{\pm}W^{\pm}Z$   $\rightarrow \ell^{\pm}\nu \quad \ell^{\pm}\nu \quad \ell^{\pm}\ell^{\mp} \rightarrow 4\ell^{\pm}$  2 regions: BDT for ttZ, BDT for ZZ •  $W^{\pm}ZZ$   $\rightarrow \ell^{\pm}\nu \quad \ell^{\pm}\ell^{\mp} \quad \rightarrow 5\ell^{\pm}$  1 region • ZZZ  $\rightarrow \ell^{\pm}\ell^{\mp}\ell^{\pm}\ell^{\mp} \rightarrow 6\ell^{\pm}$  1 region
- Backgrounds for same sign dilepton (SS-2l):
  - Lost lepton: mostly WZ with a lost lepton from the Z
  - Nonprompt lepton: 1 prompt + 1 nonprompt from hadronic decays
  - Irreducible background: W<sup>±</sup> W<sup>±</sup> from VBS, double parton scattering
  - $\circ$  Charge misidentification: a lepton from Z is assigned the wrong charge; negligible for  $\mu$

$$m_{jj}$$
-in: 65 <  $m_{jj}$  < 95 GeV  
 $m_{T}^{max}$  = max(m( $p_{T}^{miss}$ ,  $\ell_{i}$ ))





### VVV (V = W,Z) - strategy [2]

SMP-19-014







- Background fo four-lepton (4?):
   ZZ, ttZ, tWZ, WZ+fake, Higgs
- Two BDTs: one for ZZ, one for ttZ

- Background for three-lepton (3):
  - WZ with off-shell Z
  - Nonprompt lepton: 2 prompt + 1 nonprompt from hadronic decays
  - o Irreducible: ttW





### VVV (V = W,Z) - strategy [3]

SMP-19-014



5ℓ (WZZ)

6ℓ (ZZZ)

$$p_T^{\ell 1,2} > 25 \text{ GeV/c}$$
,  $p_T^{\ell > 2} > 10 \text{ GeV/c}$ , no b-tagged jets

2 SFOS pairs  $|m_{SFOS} - m_Z| < 15 \text{ GeV}$ 

3 SFOS pairs  $|m_{SFOS} - m_Z| < 15 \text{ GeV}$ 

$$\overline{ZZ+\ell_{fake}} \operatorname{m}(\overrightarrow{p}_{T}^{miss} + \overrightarrow{p}_{T}^{e5}) > 50 \text{ GeV} \quad \Sigma_{i=1}^{6} \left| \overrightarrow{p}_{T}^{\ell_{i}} \right| > 250 \text{ GeV} \quad \boxed{\overline{t\bar{t}H}} \quad \overline{ZZ+\ell\ell}$$



 Background for six-lepton (6?): negligible



Alberto Mecca - DIS2022



# VVV (V = W,Z) - results

SMP-19-014





| Process                     | Cross section (fb)                                                                                      |
|-----------------------------|---------------------------------------------------------------------------------------------------------|
| Treating Higgs boson cor    | ntributions as signal                                                                                   |
| VVV                         | $1010^{+210}_{-200}{}^{+150}_{-120}$                                                                    |
| WWW                         | $590^{+160}_{-150}^{+160}_{-120}$                                                                       |
| WWZ                         | $\begin{array}{c} -130 - 130 \\ 300 + 120 - 40 \\ -100 - 40 \\ 200 + 160 + 70 \\ -110 - 20 \end{array}$ |
| WZZ                         | $200^{+160}_{-110}  {}^{+70}_{-20}$                                                                     |
| ZZZ                         | < 200                                                                                                   |
| Treating Higgs boson contri | butions as background                                                                                   |
| VVV                         | $370^{+140}_{-130}{}^{+80}_{-60}$                                                                       |
| WWW                         | $190^{+110}_{-100}{}^{+80}_{-70}$                                                                       |
| WWZ                         | $100  {}^{+80}_{-70}  {}^{+30}_{-30}$                                                                   |
| WZZ                         | $110^{+100}_{-70}{}^{+30}_{-10}$                                                                        |
| ZZZ oz                      | < 80                                                                                                    |

- Simultaneous fit with 4 signal strengths
  - $\circ$  WWW  $\rightarrow$  3.3  $\sigma$
  - $\circ$  WWZ  $\rightarrow$  3.4  $\sigma$
  - $\circ$  WZZ  $\rightarrow$

• Combined fit for VVV produciton  $\rightarrow$  5.9 o



### VVV (V = W,Z)

### SMP-19-014

#### selection for electrons

 $< 0.1 \, cm$ 

yes

yes

< 0.05

|                                      | SS-ID              | Loose-SS-ID | 3ℓ-ID              | Loose-3ℓ-ID |
|--------------------------------------|--------------------|-------------|--------------------|-------------|
| Veto ID see Table 7                  | Comi               | mon Veto ID | Common Veto ID     |             |
| POG MVA wp                           | MVA POG 80% No Iso |             | MVA POG 90% No Iso |             |
| $p_{T}$                              | >                  | 25 GeV      | >                  | 20 GeV      |
| $ \eta $ (veto 1.4 < $ \eta $ < 1.6) | < 2.4              |             | < 2.4              |             |
| $IP_{3D}$                            | < 0.01 cm          |             | < 0.015 cm         |             |
| $ d_{xy} $                           | < 0.05 cm          |             | < 0.05 cm          |             |

< 0.4

#### selection for muons

|                                                          | SS-ID  | Loose-SS-ID    | 3ℓ-ID  | Loose-3ℓ-ID |  |
|----------------------------------------------------------|--------|----------------|--------|-------------|--|
| Veto ID see Table 7                                      | Comr   | non Veto ID    | Comr   | non Veto ID |  |
| POG ID                                                   | N      | <i>M</i> edium | N      | /ledium     |  |
| $p_{T}$                                                  | >      | 25 GeV         | >      | 20 GeV      |  |
| $ \eta $                                                 |        | < 2.4          | < 2.4  |             |  |
| $IP_{3D}$                                                | <      | < 0.015  cm    |        | < 0.015  cm |  |
| $IP_{3D}/\sigma_{IP_{3D}}$                               |        | < 4            |        | < 4         |  |
| $ d_{xy} $                                               | <      | < 0.05  cm     |        | 0.05 cm     |  |
| $ d_z $                                                  | <      | < 0.1 cm       |        | 0.1 cm      |  |
| $I_{\rm rel,R=0.3,EA,Lep}$                               | < 0.04 | < 0.4          | < 0.15 | < 0.4       |  |
| $\sigma(p_{\mathrm{T}})/p_{\mathrm{T}}^{\mathrm{track}}$ |        | < 0.2          |        | < 0.2       |  |

| Lepton Flavor                   | Electron      | Muon  |  |  |
|---------------------------------|---------------|-------|--|--|
| ID                              | MVA POG Nolso | Loose |  |  |
| lηl                             | < 2.5         | < 2.4 |  |  |
| d <sub>z</sub>                  | < 0.1 cm      |       |  |  |
| d <sub>xy</sub>                 | < 0.05 cm     |       |  |  |
| I <sub>rel</sub> (R=0.3,EA,Lep) | < 0.4         |       |  |  |

 $< 0.1 \, cm$ 

not required

yes

< 0.10 < 0.4

 $IP_{3D}$  $|d_{xy}|$  $|d_z|$ 

 $I_{\text{rel,R}=0.3,\text{EA,Lep}}$ 3-charge agreement

Trigger safe cuts

## Wyy and Zyy

### SMP-19-013

#### Selection for muons

| Cut      |
|----------|
| Yes      |
| Yes      |
| Yes      |
| $\geq 1$ |
| $\geq 2$ |
| < 0.2    |
| < 0.5    |
| > 1      |
| > 5      |
|          |

|                 | Electrons                                                                       | Muons                                               |  |  |  |
|-----------------|---------------------------------------------------------------------------------|-----------------------------------------------------|--|--|--|
|                 | $p_T > 15 \mathrm{GeV}$                                                         | $p_T > 15 \text{ GeV}$                              |  |  |  |
|                 | $ \eta  < 1.442$ or $1.566 <  \eta  < 2.5$                                      | $ \eta  < 2.4$                                      |  |  |  |
|                 | Cut based Tight ID                                                              | Cut based Tight ID                                  |  |  |  |
|                 | Impact parameter cuts                                                           | Rochester corrections                               |  |  |  |
| Basic selection | -                                                                               | photons                                             |  |  |  |
| Dasic selection | r.                                                                              | $p_T > 20 \text{ GeV}$                              |  |  |  |
|                 | $ \eta  < 1.442$ or $1.566 <  \eta  < 2.5$                                      |                                                     |  |  |  |
|                 | Cut based Medium ID                                                             |                                                     |  |  |  |
|                 | Pixel seed veto                                                                 |                                                     |  |  |  |
|                 | $ m_{\rm e, \gamma} - 91.2  > 5$ $Z\gamma \rightarrow ee\gamma (e\gamma\gamma)$ |                                                     |  |  |  |
|                 |                                                                                 | $\Delta R(\gamma, \gamma/1) > 0.4$                  |  |  |  |
|                 | $W\gamma\gamma$                                                                 | $Z\gamma\gamma$                                     |  |  |  |
|                 | Exactly one selected lepton                                                     | At least two selected same flavour leptons          |  |  |  |
| Event selection | $p_{T, \text{ lead}}^{e(\mu)} > 35(30) \text{ GeV}$                             | $p_{T, \text{ lead}}^{e(\mu)} > 35(30) \text{ GeV}$ |  |  |  |
|                 | At least two photons                                                            | At least two photons                                |  |  |  |
|                 | •                                                                               | $m_{\rm Z} > 55{\rm GeV}$                           |  |  |  |

#### Selection for electrons

| Variable               | Barrel                                      | Endcap                                      |
|------------------------|---------------------------------------------|---------------------------------------------|
| $ \eta $               | ≤ 1.442                                     | $\geq 1.566 \&\& \leq 2.5$                  |
| $d_{xy}$               | < 0.05                                      | < 0.10                                      |
| $d_z$                  | < 0.10                                      | < 0.20                                      |
| $\sigma_{i\eta i\eta}$ | < 0.0104                                    | < 0.0353                                    |
| $ \Delta \eta $        | < 0.00255                                   | < 0.00501                                   |
| $ \Delta \phi $        | < 0.022                                     | < 0.0236                                    |
| H/E                    | $< 0.026 + 1.15/E_{SC} + 0.0324\rho/E_{SC}$ | $< 0.0188 + 2.06/E_{SC} + 0.183\rho/E_{SC}$ |
| $Iso_{rel}$            | $< 0.0287 + 0.506/p_T$                      | $< 0.0445 + 0.963 / p_T$                    |
| 1/E - 1/p              | < 0.159                                     | < 0.0197                                    |
| Missing hits           |                                             | ≤ 1                                         |
| Pass conversion veto   | Yes                                         | Yes                                         |

| Systematic source                    | (νγγ [%] | $\ell\ell\gamma\gamma$ [%] |
|--------------------------------------|----------|----------------------------|
| Integrated luminosity                | 2        | 3                          |
| Pile-up                              | <1       | 1                          |
| Electron efficiencies                | <1       | 1                          |
| Muon efficiencies                    | <1       | 1                          |
| Photon efficiencies                  | 12       | 5                          |
| Jet-photon misid.                    | 21       | 6                          |
| Electron-photon misid.               | <1       | _                          |
| $W\gamma$ theoretical cross section  | 3        | <1                         |
| $Z\gamma$ theoretical cross section  | <1       | 6                          |
| Other bkgs theoretical cross section | 2        | <1                         |
| Simulated sample event count         | 8        | 4                          |

# **TEMP**



# [motivations]?

Feynman diagrams for all the processes + some text?

https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsCombined/CMSCrossSectionSMPSummaryBarChart.pdf + illuminare area di questo talk

non parlerò di VBS. Per il tempo parlerò solo di risultati a 13 TeV



- Wyy can be produced via a quartic coupling, while Zyy cannot (in the SM)
- The photons can also be produced by initial or final state radiation



- Major backgrounds estimated from data
  - $\circ$  Electrons misidentified as photons es Zy  $\rightarrow$  eey  $[e\gamma\gamma]$
  - Jets misidentified as photons: CR = V+γ<sub>loose</sub>
     Subtract Zγ → eeγ (MC) before computing FR
- QCD: ty, tty, ttyy,  $VVy \rightarrow from MC$





### Wyy and Zyy - results

SMP-19-013

- Event selection: kinematic cuts
- Signal strength from fit to p<sub>T</sub><sup>YY</sup>
- Uncertainty is dominated by systematics
  - o Mostly from data-driven background
  - Estimated by inverting lepton isolation and applying same strategy











### Wyy and Zyy - aQGC

SMP-19-013

- Both Wγγ and Zγγ are affected by dimension-6 and dimension-8 operators
  - $\circ$  Sensitivity to dim-6 is lower than diboson  $\rightarrow$  omitted
- Fit to the p<sub>T</sub><sup>YY</sup> distribution
- Effects mostly in the high energy tail



- Limits extracted for each operator with the others set to zero → 1D limits
  - $\circ\;$  Limits on  $f_{T5}$  and  $f_{T6}$  are comparable to results from Wyjj
  - $\circ$  f<sub>T0</sub>, f<sub>T5</sub>, f<sub>T8</sub> and f<sub>T9</sub> improve previous ATLAS analyses at 8 TeV
  - $\circ$  f<sub>T9</sub> improves previous CMS result at 13 TeV

|                             | $\mathrm{W}\gamma\gamma$ ( | $\text{TeV}^{-4}$ ) | $Z\gamma\gamma$ (7 | $\text{TeV}^{-4}$ ) |
|-----------------------------|----------------------------|---------------------|--------------------|---------------------|
| Parameter                   | Expected                   | Observed            | Expected           | Observed            |
| $f_{\rm M2}/\Lambda^4$      | [-57.3, 57.1]              | [-39.9, 39.5]       | _                  | _                   |
| $f_{\rm M3}/\Lambda^4$      | [-91.8, 92.6]              | [-63.8, 65.0]       | _                  | _                   |
| $f_{\rm T0}/\Lambda^4$      | [-1.86, 1.86]              | [-1.30, 1.30]       | [-4.86, 4.66]      | [-5.70, 5.46]       |
| $f_{\rm T1}/\Lambda^4$      | [-2.38, 2.38]              | [-1.70, 1.66]       | [-4.86, 4.66]      | [-5.70, 5.46]       |
| $f_{\rm T2}/\Lambda^4$      | [-5.16, 5.16]              | [-3.64, 3.64]       | [-9.72, 9.32]      | [-11.4, 10.9]       |
| $f_{\mathrm{T5}}/\Lambda^4$ | [-0.76, 0.84]              | [-0.52, 0.60]       | [-2.44, 2.52]      | [-2.92, 2.92]       |
| $f_{\rm T6}/\Lambda^4$      | [-0.92, 1.00]              | [-0.60, 0.68]       | [-3.24, 3.24]      | [-3.80, 3.88]       |
| $f_{\rm T7}/\Lambda^4$      | [-1.64, 1.72]              | [-1.16, 1.16]       | [-6.68, 6.60]      | [-7.88, 7.72]       |
| $f_{\mathrm{T8}}/\Lambda^4$ | _                          | _                   | [-0.90, 0.94]      | [-1.06, 1.10]       |
| $f_{\mathrm{T9}}/\Lambda^4$ | _                          | _                   | [-1.54, 1.54]      | [-1.82, 1.82]       |
| ca - DIS202                 | 2                          |                     | •                  | 3 Ma                |

# pWWp and pZZp

- SMP-21-014

- The Precision Proton Spectrometer (PPS) allows to measure forward (intact) protons
- Access to the full kinematics of the event!
- 100 fb<sup>-1</sup> of data (PPS in physics status)
- Search for pp → pp VV → pp i i , V = W, Z
  - Search for VBs decays into single large jets

#### **Backgrounds**

- Main: QCD multi jet
- Z+jet, W+Jet, tt production
- Diffractive pilup is not well modelled → data-driven



#### **Protons**

- multiRP  $\rightarrow$  better  $\xi$  resolution
- $0.05 < \xi < \xi^{\text{max}}$ 
  - $\circ$  180 GeV < M<sub>pp</sub> < 1.55-2.1 TeV

#### **Jets**

- $p_T^j > 200 \text{ GeV}$ ,  $|\eta_i| < 2.5$
- m<sub>i</sub> > 1126 GeV (trigger)
- $|\Delta \eta_{ii}| < 1.3$
- acoplanarity:  $a = |1 - \Delta \phi_{ii}| < 0.01$
- $p_T^{j1}/p_T^{j2} < 1.3$
- $\tau_{21}^{DDT} < 0.75$  (\*)



PPS Roman Pots containing Detectors CMS

(\*) Designing Decorrelated Tagger. Goal: avoid mass sculpting. See arXiv:1603.00027

### pWWp and pZZp - strategy

SMP-21-014





### Proton-jet matching

- m(VV) = m(pp) = In the
- y(VV) = y(pp) diamond
- In the arms one proton is correctly matched, the other comes from pileup
- Still considered signal

Divide WW and ZZ with cut on:

$$\cos(\pi/4)*M_{pruned}^{leading} + \sin(\pi/4)*M_{pruned}^{subleading}$$

#### Pileup background

- Use 2D sideband in m y plane
  - $\circ$  | 1 m<sub>VV</sub>/m<sub>pp</sub>| > 1.0  $\circ$  | y<sub>pp</sub> y<sub>VV</sub>| > 0.5

  - $\circ$  Note: both  $\delta$  and o are inside
- and in the acoplanarity



| ABCD method   | a < 0.01 | a > 0.01 |
|---------------|----------|----------|
| in rectangle  | A (SR)   | В        |
| out rectangle | С        | D        |

# $ZZ \rightarrow 4\ell (\ell = e, \mu) ex #3$

SMP-19-001



- Produced mainly via qq t- and u-channel (~ 90 %) and gg → loop (~ 10 %)
- No tree-level contribution from TGC in SM → probe aTGC
- Main background: nonprompt leptons
  - Two CR in data with a  $Z + \ell^+\ell^-$  where both  $\ell$  pass a loose ID
    - 2P2F: both fail tight ID
    - 3P1F: one fails tight ID
  - Measure lepton FR in CR with  $Z+\ell_{loose}$  as  $p(\ell_{loose} \rightarrow \ell_{tight})$
  - Scale each event in CRs by the lepton FR → contribution in SR
- Rare backgrounds: ttZ, VVV → MC

| Variable                     | Cut                            |  |  |  |
|------------------------------|--------------------------------|--|--|--|
| p <sub>T</sub> <sup>ℓ1</sup> | > 20 GeV                       |  |  |  |
| $p_T^{~e2,\mu2}$             | > 12, 10 GeV                   |  |  |  |
| $p_{T}^{\ e,\mu,}$           | > 7, 5 GeV                     |  |  |  |
| η <sub>e,μ</sub>             | < 2.5, 2.4 GeV                 |  |  |  |
| ΔR(ℓ, ℓ)                     | > 0.02                         |  |  |  |
| $\Delta R(e, \mu)$           | > 0.05                         |  |  |  |
| m(ll)                        | 60 < m <sub>ℓℓ</sub> < 120 GeV |  |  |  |
| m(ℓℓ')                       | > 4 GeV                        |  |  |  |



- $| m_{\ell\ell} m_Z | < 10 \text{ GeV}$
- $p_{T}^{\text{miss}} < 25 \text{ GeV}$
- $m_T(\ell_3, p_T^{miss}) < 30 \text{ GeV}$



### $WZ \rightarrow 3\ell \nu$

- SMP-20-014
- CMS

- Produced only by qq' at tree level
- Sensitive to the WWZ TGC
- Sensitive to charge asymmetry



- Reducible bkg: tight-to-loose
- Irreducible bkg: MC (shape) + validation in CRs (norm)
  - $\circ$  ZZ (~6% of yield in SR), ttZ and tZq (~3.2%), X+ $\gamma$  (~1.5%)



| Region             | $N_\ell$ | $p_{\mathrm{T}}\{\ell_{\mathrm{Z1}},\ell_{\mathrm{Z2}},\ell_{\mathrm{W}},\ell_{\mathrm{4}}\}$ | Nossf    | $ M(\ell_{Z1},\ell_{Z2})-m_Z $ | $p_{ m T}^{ m miss}$ | $N_{\rm btag}$ | $\min(M(\ell\ell'))$ | $M(\ell_{\rm Z1},\ell_{\rm Z2},\ell_{\rm W})$ |
|--------------------|----------|-----------------------------------------------------------------------------------------------|----------|--------------------------------|----------------------|----------------|----------------------|-----------------------------------------------|
| SR                 | =3       | >{25, 10, 25, —} GeV                                                                          | ≥1       | <15 GeV                        | >30 GeV              | =0             | >4 GeV               | >100 GeV                                      |
| CR-ZZ              | =4       | >{25, 10, 25, 10} GeV                                                                         | $\geq 1$ | $< 15 \mathrm{GeV}$            |                      | =0             | >4 GeV               | >100 GeV                                      |
| $CR$ - $t\bar{t}Z$ | =3       | >{25, 10, 25, —} GeV                                                                          | $\geq 1$ | <15 GeV                        | >30 GeV              | >0             | >4 GeV               | >100 GeV                                      |
| CR-conv            | =3       | >{25, 10, 25, —} GeV                                                                          | $\geq 1$ | Ζγ                             | $\leq$ 30 GeV        | =0             | >4 GeV               | < 100  GeV                                    |
| 40                 |          |                                                                                               |          | Albarta Massa DICOOC           | 110                  | ++7 +          | 70                   | 2 May 2022                                    |

### $W^+W^- \rightarrow \ell^+\ell^- 2\nu$

SMP-18-004

• Produced via qq annihilation ( $\sim$ 95 %), gg-induced loop ( $\sim$ 5 %) and H  $\rightarrow$  WW (background)

Signature: 2 isolated leptons and large p<sub>T</sub><sup>miss</sup>

- Main background processes: tt, DY and W+jets
  - $\circ$  Lepton FR(p<sub>T</sub>,  $\eta$ ) is measured in QCD-enriched data
  - Applied in CR with 1 passing and 1 failing lepton

• Two analysis: sequential cut (measure  $\sigma_{tot}$ ,  $\sigma_{0/1j}$ ,  $d\sigma_{0j}/dp_t^{THR}$ ) and Random Forest ( $\sigma_{tot}$ ,  $d\sigma/dn_j$ )



| Quantity                                                                            | Sequential Cut |         |             |
|-------------------------------------------------------------------------------------|----------------|---------|-------------|
| •                                                                                   | DF             | SF      |             |
| Number of leptons                                                                   | Str            | ictly 2 | <del></del> |
| Lepton charges                                                                      | Ор             | posite  |             |
| $p_{\mathrm{T}}^{\ell\mathrm{max}}$                                                 |                | >25     |             |
| $p_{\mathrm{T}}^{\ell}$ min                                                         |                | >20     |             |
| $m_{\ell\ell}$                                                                      | >20            | >40     |             |
| Additional leptons                                                                  |                | 0       | elinnrace   |
| $ m_{\ell\ell}-m_Z $                                                                |                | >15     | suppress    |
| $p_{ m T}^{\ell\ell}$                                                               | >30            | >30     | DY          |
| $p_{ m T}^{ m miss}$                                                                | >20            | >55     |             |
| $p_{\mathrm{T}}^{\mathrm{miss,proj}}$ , $p_{\mathrm{T}}^{\mathrm{miss,track}}$ proj | >20_           | >20     |             |
| Number of jets                                                                      |                | ≤1      | suppress    |
| Number of b-tagged jets                                                             | L              | 0       | ttbar       |
| DYMVA score                                                                         | _              | >0.9    |             |
| Drell–Yan RF score $S_{DY}$                                                         | _              |         |             |
| tī RF score $S_{t\bar{t}}$                                                          |                |         |             |

b jets:  $p_T > 20$  GeV, medium WP  $p_T^{\text{miss, proj}} = \text{proj}_{\perp}(\mathbf{p}_T^{\text{miss}}, \mathbf{p}_T^{\ell, \text{ closest}})$ 

DIS2022

DYMVA: developed for HWW analysis arXiv:1806.05246

3 May 2022

### $W^+W^- \rightarrow \ell^+\ell^- 2\nu$ - results [1]

SMP-18-004



**Total cross section** measurement with sequential analysis

| Categ         | ory     | Signal strength   | Cross section [pb] |
|---------------|---------|-------------------|--------------------|
| 0-jet         | DF      | $1.054 \pm 0.083$ | $125.2 \pm 9.9$    |
| 0-jet         | SF      | $1.01 \pm 0.16$   | $120 \pm 19$       |
| 1-jet         | DF      | $0.93 \pm 0.12$   | $110 \pm 15$       |
| 1-jet         | SF      | $0.76 \pm 0.20$   | $89 \pm 24$        |
| 0-jet & 1-jet | DF      | $1.027 \pm 0.071$ | $122.0 \pm 8.4$    |
| 0-jet & 1-jet | SF      | $0.89 \pm 0.16$   | $106 \pm 19$       |
| 0-jet & 1-jet | DF & SF | $0.990 \pm 0.057$ | $117.6 \pm 6.8$    |
|               |         |                   |                    |

**Fiducial cross section**: two dressed e or  $\mu$  in the event with p<sub>T</sub> > 20 GeV and  $|\eta| < 2.5$ , m<sub> $\ell\ell$ </sub> > 20 GeV, p<sub>T</sub><sup> $\ell\ell$ </sup> > 30 GeV and E<sub>T</sub><sup>miss</sup> > 20 GeV

Repeated for several pT thresholds for the jet veto

51

| p <sub>T</sub> threshold (GeV) | Signal strength   | Cross section (pb) |
|--------------------------------|-------------------|--------------------|
| 25                             | $1.091 \pm 0.073$ | $0.836 \pm 0.056$  |
| 30                             | $1.054 \pm 0.065$ | $0.892 \pm 0.055$  |
| 35                             | $1.020 \pm 0.060$ | $0.932 \pm 0.055$  |
| 45                             | $0.993 \pm 0.057$ | $1.011 \pm 0.058$  |
| 60                             | $0.985 \pm 0.059$ | $1.118 \pm 0.067$  |

#### **Theoretical prediction**:

$$\sigma_{tot}^{NNLO} = 118.8 \pm 3.6 \text{ pb}$$



## $W^+W^- \rightarrow \ell^+\ell^- 2\nu$ - results [2]

SMP-18-004



#### **Differential cross section** measurement



10<sup>2</sup> p<sub>T</sub> min [GeV]



 $\Delta \phi_{_{\rm II}}$  [rad]

#### **Limits on 3 Wilson coefficients**



◆ Observed — 68% CL Obs.
 ▲ Exp. for SM — 68% CL Exp.

رِ س 10

---- 95% CL Obs. ---- 95% CL Exp.

 $c_{www}^{2}/\Lambda^{2}$  [TeV<sup>-2</sup>]







 $c_W/\Lambda^2$  [TeV<sup>-2</sup>]

- 68% CL Obs. --- 95% CL Obs.

0.1