# Multiboson Production at ATLAS

### **Ruchi Gupta**

for the ATLAS Collaboration







### **Electroweak Precision and New Physics**

- Precision test of higher order predictions
  - higher order corrections more important at higher center of mass energies
  - recently available NNLO QCD and NLO EWK theoretical calculations.
- Study of triple and quartic gauge boson couplings (TGC and QGC)
  - Gauge boson couplings fixed within the standard model (SM).
  - Strong test of the SM couplings
  - Indirect search for new physics via anomalous gauge boson couplings
- Search for multiboson final states never observed before.



#### **Standard Model Production Cross Section Measurements**



Status: February 2022

### **Observation of WWW production**

- Unexplored at the LHC, provides direct Test of gauge boson self-coupling
- Final States Considered
  - $WWW \rightarrow l^{\pm}vl^{\pm}vqq$  and  $WWW \rightarrow l^{\pm}vl^{\pm}v$  with l = e or  $\mu$
- Main Backgrounds : WZ, non-prompt leptons (mainly ttbar)
- Data-driven estimates for non-prompt leptons and charge mis-identified leptons backgrounds
- Two BDTs used to improve signal to background separation in 2*l* and 3*l* signal regions
- Binned maximum-likelihood fit performed on BDT distributions in signal regions and  $m_{ll}$  distribution in WZ Control regions



### **Observation of WWW production**

#### WWW production observed with significance $8.0\sigma$ (expected $5.4\sigma$ )!



| Fit                                            | $\mu(WWW)$      | Significance observed (expected) |  |  |
|------------------------------------------------|-----------------|----------------------------------|--|--|
| $e^{\pm}e^{\pm}$                               | $1.54 \pm 0.76$ | $2.2 (1.4) \sigma$               |  |  |
| $e^{\pm}\mu^{\pm}$                             | $1.44 \pm 0.39$ | $4.1 (3.0) \sigma$               |  |  |
| $\mu^{\pm}\mu^{\pm}$                           | $2.23 \pm 0.46$ | $5.6 \ (2.7) \ \sigma$           |  |  |
| $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$ | $1.75 \pm 0.30$ | $6.6 (4.0) \sigma$               |  |  |
| $3\ell$                                        | $1.32 \pm 0.37$ | $4.8 (3.8) \sigma$               |  |  |
| Combined                                       | $1.61\pm0.25$   | $8.0~(5.4)~\sigma$               |  |  |

- Uncertainty on the signal strength is mainly statistical
- Largest systematic uncertainties
  - uncertainty on data-driven background estimates (6%)
  - WZ theory uncertainties

## VBS Z(→vv)γjj production



- VBF Topology
  - mjj > 250 GeV
  - $|\Delta \eta_{ij}| > 3.0$ ,  $|\Delta \phi_{ij}| < 2.5$
- Large MET > 150 GeV
- one central photon
  - 15<p<sub>T</sub><110 GeV

- $C_{\gamma} = \exp\left[-\frac{4}{(\eta_1 \eta_2)^2} \left(\eta_{\gamma} \frac{\eta_1 + \eta_2}{2}\right)^2\right],$
- Centrally located wrt the jets (C<sub>γ</sub>>0.4)



### VBS $Z(\rightarrow vv)\gamma jj$ production

- Main Backgrounds
  - $W\gamma$ , non prompt photons,  $Z\gamma$  strong production
- Cut based selection with MET triggers
- Search performed in mjj bins

- Observed Significance
  - **5.2σ** (5.1σ expected)
- Fiducial cross-section
  - **1.31 ± 0.29 fb** (theory:  $1.27 \pm 0.17$  fb)
- Largest systematic uncertainties
  - jet energy scale,  $\nabla \gamma$  theory and normalization



#### **Signal Strength**

 $1.03 \pm 0.16(\text{stat}) \pm 0.19(\text{syst}) \pm 0.02(\text{lumi})$ 

### Observation of EW Z(II) yjj

- Measured in the  $ee\gamma jj$  and  $\mu\mu\gamma jj$  channels
- Main backgrounds:
  - Strong  $Z\gamma jj$ , fake  $\gamma$ ,  $tt\gamma$
- Key observable:
  - $Z\gamma$  centrality  $\zeta ll\gamma$ ; **SR:**  $\zeta ll\gamma < 0.4$
  - mjj > 150 GeV
- Fit performed to *mjj* spectrum









### Observation of EW Z(II) yjj

• Observation with large  $(10\sigma)$  significance as expected

$$\mu_{EW} = 0.95^{+0.14}_{-0.13}$$
  
= 0.95 ± 0.08 (stat) ± 0.11 (syst).

- Zy modelling uncertainty have an impact similar to the experimental uncertainties.
- Fiducial cross section is measured:
  - $\sigma_{\text{fid}} = 4.49 \pm 0.58 \text{ fb}, (\sigma_{\text{pred}} = 4.73 \pm 0.27 \text{ fb})$

|                                      | Data stat. | MC stat. | Background | Reco    | EW mod.      | QCD mod.     | Total |
|--------------------------------------|------------|----------|------------|---------|--------------|--------------|-------|
| $\Delta \sigma_{EW}/\sigma_{EW}$ [%] | ±9         | ±1       | ±1         | $\pm 5$ | $^{+6}_{-5}$ | $^{+5}_{-4}$ | ±13   |

- The **strong+EW Z***yjj* **cross section** is measured
  - 20.6+1.4 fb (predicted: 20.4+2.6 fb)

DESY. Ruchi Gupta

### From Cross-section Measurements to New Physics

#### **Effective Field Theory**

EFT describes several possible new physics scenarios at energy scale Λ

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_{i}^{(5)}}{\Lambda} O_{i}^{(5)} + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$$

- Measurements sensitive to the effects of new physics → constrain the coefficients of SMEFT expression (Wilson coefficients)
- Use Run2 differential cross section measurements from various final states to test SMEFT (Λ=1 TeV)
  - **WW** (evμv, 36 fb<sup>-1</sup>) : p<sub>T</sub> lead,lep
  - **WZ** (36 fb<sup>-1</sup>): m<sub>T</sub>WZ
  - 4l (139 fb<sup>-1</sup>):  $m_{Z2}$  in three different regions of  $m_{4l}$
  - **Z+2j** (139 fb<sup>-1</sup>) :  $\Delta \phi j j$
- Constraining dim-6 operators ignoring odd-dimensional operators (lepton and baryon number violations) and non-leading terms

### Combined EFT interpretation WW, WZ, 4I and Z+2j

- 33 CP-even operators are considered
- Profile likelihood ratio test scan for two Wilson coefficients (fixing other coefficients to 0)





**DESY.** Ruchi Gupta

### Combined EFT interpretation WW, WZ, 4I and Z+2j

- Modified basis constructed with linear combinations of the warsaw basis vectors
- Constraints obtained on further 13 linear combinations of Wilson coefficients
  - Group together Wilson coefficients with similar physics impact
- Investigate both linear  $O(\Lambda^{-2})$  as well as quadratic  $O(\Lambda^{-4})$  contributions

c'<sub>Vff</sub><sup>[i]</sup> – affect vector boson coupling to fermions c'<sub>2q2l</sub><sup>[i]</sup>, c'<sub>4q</sub><sup>[i]</sup> – four fremion coefficients





### **Summary**

- Small cross-sections for multiboson production processes
  → small signal swamped by large, challenging backgrounds
- Precision analyses only recently possible.
- Most measurements are still statistics limited.
- Differential measurements made with more data → very useful for EFT interpretations
- Looking Forward to Run3 datasets for interesting new results!