

Recent observations and measurements of vector-boson fusion and scattering with ATLAS

Alain Bellerive

Carleton University, Canada

on behalf of the ATLAS Collaboration

Eur. Phys. J. C (2021) 81:163 https://doi.org/10.1140/epjc/s10052-020-08734-w THE EUROPEAN
PHYSICAL JOURNAL C

Regular Article - Experimental Physics

Eur. Phys. J. C 81 (2021) 163

Differential cross-section measurements for the electroweak production of dijets in association with a Z boson in proton–proton collisions at ATLAS

ATLAS Collaboration*

CERN, 1211 Geneva 23, Switzerland

Received: 30 June 2020 / Accepted: 5 December 2020 / Published online: 17 February 2021 © CERN for the benefit of the ATLAS collaboration 2021, corrected publication 2021

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Submitted to Nature Physics

Submitted to: Nature Physics

CERN-EP-2020-016 23rd April 2020

https://doi.org/10.48550/arXiv.2004.10612

Observation of electroweak production of two jets and a Z-boson pair with the ATLAS detector at the LHC

The ATLAS Collaboration

Outline

- ➤ Scope and Goals
- Vector Boson Fusion (VBF) versus Vector Boson Scattering (VBS)
- Datasets and Event Topology
- Measurement of Electroweak Zjj
- Observation of Electroweak ZZjj
- $\triangleright \gamma \gamma \rightarrow WW$ Production
- ➤ Prospect at HL-LHC
- > Summary

Scope: Electroweak (EW) Gauge Couplings

Exploration at the LHC of electroweak symmetry breaking in all aspects. In particular, the **self-couplings of the vector gauge bosons** are completely specified in the Standard Model (SM), as are the couplings of the Higgs boson to the vector bosons (V=W,Z) once the Higgs mass is known.

Vector Boson Fusion (VBF)

The only **triple gauge couplings (TGC)** allowed in the SM are **WWZ and WWγ**. There are no ZZZ, ZZγ, Zγγ, or γγγ couplings in the SM.

Vector Boson Scattering (VBS)

The only **quartic gauge couplings (QGC)** allowed in the SM are **WWWW, WWZZ, WWZy and WWyy**. There are no ZZZZ or yyyy couplings in the SM.

Goals in general

- 1. EW VBF production mechanism of Higgs created a vast interest in H+jets and Z+jets production as a function of N_{jets} in the final states.
- 2. Better understand strong **QCD** *Vjj* and *VVjj* as background for Higgs and electroweak physics, as well as for other precise Standard Model (SM) measurements and searches at the LHC. Thus, tuning of event generators at NLO.
- 3. Extract the rare electroweak (EW) production of Vjj and VVjj.
- 4. Triple and Quartic Gauge couplings precise probe for testing the SM.

Goals in practice: VBF and VBS measurements

- Electroweak Vjj and VVjj and $\gamma\gamma \to WW$ production are all very rare
- Rate relative to inel. $pp \to X$

$$\sigma_{Zjj}/\sigma_{\rm inel} \approx 10^{-12}$$
 $\sigma_{ZZjj}/\sigma_{\rm inel} \approx 10^{-14}$

- Challenging analysis 13 TeV: small signal swamped by backgrounds; often poorly modelled
 - 5σ observation for $W^{\pm}W^{\pm}jj$ and WZjj, ZZjj etc.

Phys. Rev. Lett. 123 (2019) 161801
Phys. Lett. B 793 (2019) 469

Strong vs Electroweak Zjj Production at 13 TeV

ATLAS, Eur. Phys. J. C 75.2 (2015)

Electroweak (EW) is O(100) smaller **Goal: Differential cross-sections!!!**

EW p + p
$$\rightarrow$$
 Z + 2 jets + X
 $\sigma_{EW}(Z+ \geq 2 \text{ jets}) \approx 119 \text{ fb}$

ATLAS, Eur. Phys. J. C 77.6 (2017)

Strong vs Electroweak Zjj Production at 13 TeV

ATLAS, Eur. Phys. J. C 75.2 (2015)

Electroweak (EW) is O(100) smaller **Goal: Differential cross-sections!!!**

EW p + p
$$\rightarrow$$
 Z + 2 jets + X
 $\sigma_{EW}(Z+ \geq 2 \text{ jets}) \approx 119 \text{ fb}$

ATLAS, Eur. Phys. J. C 77.6 (2017)

Strong vs Electroweak ZZjj Production at 13 TeV

Strong ZZjj

Rarest EW VVjj with the goal to observe it!!!

Strong vs Electroweak ZZjj Production at 13 TeV

Strong ZZjj

Rarest EW VVjj with the goal to observe it!!!

Topology EW (Z)Zjj with at least one Z

The strategy is to study **EW** *Vjj* and **EW** *VVjj* production via which the **VBF** and **VBS** diagram contribution.

Signature of EW (Z)Zjj:

- > Rapidity of observables $y = \frac{1}{2} \ln \left[\frac{E + p_z}{E p_z} \right]$
- ightharpoonup Centrality $\xi \approx (y_{V(V)} y_{jj})/\Delta y_{jj}$
- \triangleright Large rapidity gap between jets Δy_{jj}
- \succ Large dijet invariant mass m_{ii}
- Little hadronic activity (few extra jets), within rapidity gap between two leading jets
- \triangleright Low p_T (or lack) of third jet / low p_T of (V)Vjj system
- ➤ Boost (rapidity) of (di)boson and dijet system similar
- $ightharpoonup p_{\mathrm{T}}$ of (di)boson and dijet system similar, so back-to-back in ϕ

Typical Signal Region for VBF and VBS Topology Signature of EW signal and Strong background

ho <u>EW Zjj and ZZjj</u>: Lack of colour connection means little hadronic activity between outgoing internal quarks. Thus larger Δy_{jj} , larger m_{jj} and lager p_T^Z for EW signal, with more $N_{jet}=0$ in gap region and centrality $\xi<0.5$.

Dataset Run-2

EW Zjj

Eur. Phys. J. C81 (2021) 163

EW ZZjj

arXiv.2004.10612

 $\gamma\gamma \rightarrow WW$

Phys. Lett. B816 (2021) 136190

 $\sqrt{s} = 13 \text{ TeV}$

Run2 period: 2015 - 2018

Total Physics: 139 fb⁻¹

Eur. Phys. J. C (2021) 81:163 https://doi.org/10.1140/epjc/s10052-020-08734-w THE EUROPEAN
PHYSICAL JOURNAL C

Eur. Phys. J. C 81 (2021) 163

Regular Article - Experimental Physics

Differential cross-section measurements for the electroweak production of dijets in association with a Z boson in proton–proton collisions at ATLAS

ATLAS Collaboration*

CERN, 1211 Geneva 23, Switzerland

Received: 30 June 2020 / Accepted: 5 December 2020 / Published online: 17 February 2021 © CERN for the benefit of the ATLAS collaboration 2021, corrected publication 2021

Measurement of EW Zjj with $Z \rightarrow \ell\ell$ (1/4) EPJC 81 (2021) 16

- ➤ EW Zjj was first observed by ATLAS using Run-1 data JHEP 04 (2014) 031
- \succ Full Run-2 dataset, measured differential cross sections of four characteristic observables: Dijet mass m_{jj} / rapidity separation Δy_{jj} / azimuthal dijet separation $\Delta \phi_{jj}$ / leptons $p_T^{\ell\ell}$
- $>Z \rightarrow e^+e^-$ and $Z \rightarrow \mu^+\mu^-$, with $p_T^\ell > 25$ GeV, $m_{\ell\ell} \in (81-101)$ GeV and $p_T^{\ell\ell} > 20$ GeV
- $p_{
 m T}^{j} > 25~{
 m GeV}, p_{
 m T}^{j1(j2)} > 85~(80)~{
 m GeV}, \Delta y_{ij} > 2~{
 m and}~m_{ij} > 1000~{
 m GeV},$
- ➤ Main challenge: separate strong Zjj and EW Zjj
- ► EW Zjj enhanced signal region using VBF topology cuts
- ➤ Strong Zjj poorly modelled in VBF topology region
- \triangleright Control regions used to constrain strong Zjj prediction
- > Likelihood fit measures EW Zjj bin-by-bin

$$\ln \mathcal{L} = -\sum \nu_{ri}(\boldsymbol{\theta}) + \sum N_{ri}^{\text{data}} \ln \nu_{ri}(\boldsymbol{\theta}) - \sum \frac{\theta_s^2}{2}$$
with $\nu_{ri} = \mu_i \nu_{ri}^{\text{EW,MC}} + \nu_{ri}^{\text{strong}} + \nu_{ri}^{\text{other,MC}}$

Measurement of EW Zjj with $Z \rightarrow \ell\ell$ (1/4) EPJC 81 (2021) 16

- ➤ EW Zjj was first observed by ATLAS using Run-1 data JHEP 04 (2014) 031
- \succ Full Run-2 dataset, measured differential cross sections of four characteristic observables: Dijet mass m_{jj} / rapidity separation Δy_{jj} / azimuthal dijet separation $\Delta \phi_{jj}$ / leptons $p_T^{\ell\ell}$
- $>Z \rightarrow e^+e^-$ and $Z \rightarrow \mu^+\mu^-$, with $p_T^\ell > 25$ GeV, $m_{\ell\ell} \in (81-101)$ GeV and $p_T^{\ell\ell} > 20$ GeV
- $p_{
 m T}^{j} > 25~{
 m GeV}$, $p_{
 m T}^{j1(j2)} > 85~(80)~{
 m GeV}$, $\Delta y_{ii} > 2~{
 m and}~m_{ii} > 1000~{
 m GeV}$
- ➤ Main challenge: separate strong Zjj and EW Zjj
- ➤ EW Zjj enhanced signal region using VBF topology cuts
- ➤ Strong Zjj poorly modelled in VBF topology region
- ➤ Control regions used to constrain strong *Zjj* prediction
- > Likelihood fit measures EW Zjj bin-by-bin

$$\ln \mathcal{L} = -\sum \nu_{ri}(\boldsymbol{\theta}) + \sum N_{ri}^{\text{data}} \ln \nu_{ri}(\boldsymbol{\theta}) - \sum \frac{\theta_s^2}{2}$$
with $\nu_{ri} = (\mu_i) \nu_{ri}^{\text{EW,MC}} + \nu_{ri}^{\text{strong}} + \nu_{ri}^{\text{other,MC}}$

Measurement of EW Zjj with $Z \to \ell\ell$ (2/4) EPJC 81 (2021) 163

Fit: 36 EW μ_i and 74 parameters to constrain strong Zjj

• 144 measurement bins / 110 free parameters

Main uncertainties:

- Data statistics
- Strong generator choice (switching between 3)
- Jet systematics (JES, JER)

EW Zjj measured in 5 m_{jj} bins Analogously in 9 Δy_{jj} , 10 $p_T^{\ell\ell}$ and 12 $\Delta \phi_{jj}$ bins

_____ EW *Zjj*

 $\sigma_{\rm EW} = 37.4 \pm 3.5 \, ({\rm stat}) \pm 5.5 \, ({\rm syst}) \, {\rm fb}.$

Measurement of EW Zjj with $Z \rightarrow \ell\ell$ (3/4) EPJC 81 (2021) 163

- **EW SR Differential Cross Sections:**
 - dijet mass m_{jj}
 - 2. rapidity separation Δy_{ij}
 - 3. azimuthal dijet separation $\Delta \phi_{ii}$
 - 4. leptons $p_T^{\ell\ell}$
- Measured event yields are corrected to particle level (iterative Bayesian unfolding)
- Measurements compared to various MC prediction
 - Guidance on generator choice; refinement of parameter settings
 - Herwig7+V_{BFNLO} in reasonable agreement with the data for all measured distributions.
- EW+strong differential cross sections measured separately
- ➤ EW differential cross sections are used to set limits on BSM models using an EFT framework
 - $ightharpoonup \Delta \phi_{jj}$ is CP-odd and very sensitive to certain Wilson coefficients (c_W)

Measurement of EW Zjj with $Z \rightarrow \ell\ell$ (4/4) EPJC 81 (2021) 163

ATLAS Simulation $\sqrt{s} = 13 \text{ TeV}, \text{ EW } Zij \rightarrow IIjj$ $|\mathcal{M}_{d6}|^2$ $--2 \text{Re}(\mathcal{M}_{SM}^* \mathcal{M}_{d6})$ $--|\mathcal{M}_{d6}|^2 + 2 \text{Re}(\mathcal{M}_{SM}^* \mathcal{M}_{d6})$ $c_{\rm W} / \Lambda^2 = 0.2 \, {\rm TeV}^{-2}$ 0.3 0.0 -0.3 $\tilde{c}_{W} / \Lambda^{2} = 0.2 \text{ TeV}^{-2}$ 0.0 2log -0.3 $c_{\text{HWB}} / \Lambda^2 = 1.8 \text{ TeV}^{-2}$ 0.0 -0.3 $\tilde{c}_{\text{HWB}} / \Lambda^2 = 1.8 \text{ TeV}^{-2}$ 0.0 -0.3 m_{ii} [TeV] $p_{\mathsf{T},\mathsf{II}}$ [GeV] $|\Delta y_{ii}|$

SM

Ratio to

Effective Field Theory (EFT) to test anomalous coupling and deviations from the SM attributed to dimension-six corrections in the WWZ vertex by exploiting the sensitivity of the signed $\Delta \phi_{ii}$

$$\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{SM}} + \sum_{i} \frac{c_{i}}{\Lambda^{2}} \mathcal{O}_{i}$$

$$|\mathcal{M}|^2 = |\mathcal{M}_{SM}|^2 + 2\operatorname{Re}(\mathcal{M}_{SM}^*\mathcal{M}_{d6}) + |\mathcal{M}_{d6}|^2$$

Fit to IIjj EW $\Delta \phi(j_1, j_2)$ spectrum

95 % CL

68 % CL

--SM + $|\mathcal{M}_{d6}|^2$ + $2\text{Re}(\mathcal{M}_{SM}^*\mathcal{M}_{d6})$

 $\Delta \phi(j_1, j_2)$

 $SM + 2Re(\mathcal{M}_{SM}^*\mathcal{M}_{d6})$

Overall, the results are consistent with the SM.

ZZjj

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Submitted to Nature Physics

CERN-EP-2020-016 23rd April 2020

Submitted to: Nature Physics

https://doi.org/10.48550/arXiv.2004.10612

Observation of electroweak production of two jets and a Z-boson pair with the ATLAS detector at the LHC

The ATLAS Collaboration

EW ZZjj candidate

Observation of EW ZZjj (1/3)

- > EW ZZjj: very rare; unique sensitivity to non-SM quartic ZZZZ coupling
- \triangleright Main challenge: separate EW ZZjj from strong ZZjj production / Use b-jet veto to reduce $t\bar{t}$
- \triangleright Decay channels: $ZZjj \rightarrow 4\ell jj$ and $ZZjj \rightarrow \ell\ell\nu\nu jj$ [OSSF = opposite-sign, same-flavour leptons]
- \triangleright Modelling of strong ZZjj validated in **EW-suppressed CR** defined by $\xi > 0$. 5 for at least one Z
- ➤ Multivariate Discriminants (MDs) based on Gradient Boosted Decision Tree algorithm are trained with simulated events using TMVA framework to separate EW ZZjj from backgrounds

	$\ell\ell\ell\ell jj$	$\ell\ell u u jj$	
Electrons	$p_{\rm T} > 7~{\rm GeV}, \eta < 2.47$ $ d_0/\sigma_{d_0} < 5~{\rm and}~ z_0 \times \sin\theta < 0.5~{\rm mm}$		
Muons	$p_{\rm T}>7$ GeV, $ \eta <2.7$ $ d_0/\sigma_{d_0} <3 \text{ and } z_0\times\sin\theta <0.5 \text{ mm}$ $p_{\rm T}>7$ GeV, $ \eta <2.5$		
Jets	$p_{\rm T} > 30~(40)~{\rm GeV}~{\rm for}~ \eta < 2.4~(2.4 < \eta < 4.5)$	$p_{\rm T} > 60~(40)~{\rm GeV}$ for the leading (sub-leading) jet	
ZZ selection	$p_{\rm T}>20,20,10$ GeV for the leading, sub-leading and third leptons Two OSSF lepton pairs with smallest $ m_{\ell^+\ell^-}-m_Z + m_{\ell^{'+}\ell^{'-}}-m_Z $ $m_{\ell^+\ell^-}>10 \text{ GeV for lepton pairs}$ $\Delta R(\ell,\ell')>0.2$	$p_{\rm T} > 30~(20)~{ m GeV}$ for the leading (sub-leading) lepton One OSSF lepton pair and no third leptons $80 < m_{\ell^+\ell^-} < 100~{ m GeV}$ No b-tagged jets	
Dijet selection	$E_{\rm T}^{\rm miss}\text{-significance}>12$ Two most energetic jets with $y_{j_1}\times y_{j_2}<0$ $m_{jj}>300~{\rm GeV}~{\rm and}~\Delta y(jj)>2$ $m_{jj}>400~{\rm GeV}~{\rm and}~\Delta y(jj)>2$		

 $m_{ij} > 400 \text{ GeV} \text{ and } \Delta y(jj) > 2$

Observation of EW ZZjj (1/3)

Dijet selection

> EW ZZjj: very rare; unique sensitivity to non-SM quartic ZZZZ coupling

 $m_{ij} > 300 \text{ GeV}$ and $\Delta y(jj) > 2$

- \triangleright Main challenge: separate EW ZZjj from strong ZZjj production / Use b-jet veto to reduce $t\bar{t}$
- \triangleright Decay channels: $ZZjj \rightarrow 4\ell jj$ and $ZZjj \rightarrow \ell\ell\nu\nu jj$ [OSSF = opposite-sign, same-flavour leptons]
- \succ Modelling of strong ZZjj validated in **EW-suppressed CR** defined by $\xi > 0.5$ for at least one Z
- > Multivariate Discriminants (MDs) based on Gradient Boosted Decision Tree algorithm are trained with simulated events using TMVA framework to separate EW ZZjj from backgrounds

	$\ell\ell\ell\ell jj$	$\ell\ell u u jj$
Electrons	$p_{\rm T} > 7~{\rm GeV}, \eta < 2.47$ $ d_0/\sigma_{d_0} < 5~{\rm and}~ z_0 \times \sin\theta < 0.5~{\rm mm}$	
Muons	$p_{\rm T}>7$ GeV, $ \eta <2.7$ $ d_0/\sigma_{d_0} <3 \text{ and } z_0\times\sin\theta <0.5 \text{ mm}$ $p_{\rm T}>7$ GeV, $ \eta <2.5$	
Jets	$p_{\rm T} > 30~(40)~{\rm GeV~for}~ \eta < 2.4~(2.4 < \eta < 4.5)$	$p_{\rm T} > 60~(40)~{\rm GeV}$ for the leading (sub-leading) jet
ZZ selection	$p_{\rm T}>20,20,10$ GeV for the leading, sub-leading and third leptons Two OSSF lepton pairs with smallest $ m_{\ell^+\ell^-}-m_Z + m_{\ell^{'+}\ell^{'-}}-m_Z $ $m_{\ell^+\ell^-}>10 \text{ GeV for lepton pairs}$ $\Delta R(\ell,\ell')>0.2$ $66< m_{\ell^+\ell^-}<116 \text{ GeV}$	$p_{\rm T}>30~(20)~{\rm GeV}$ for the leading (sub-leading) lepton One OSSF lepton pair and no third leptons $80 < m_{\ell^+\ell^-} < 100~{\rm GeV}$ No b-tagged jets $E_{\rm T}^{\rm miss}\text{-significance} > 12$

Two most energetic jets with $y_{j_1} \times y_{j_2} < 0$

Observation of EW ZZjj (2/3)

Observation of EW ZZjj (3/3)

- \triangleright EW and strong ZZjj measurements: $\mu_{EW}=1.35\pm0.34$ and $\mu_{strong}=0.96\pm0.22$
 - \rightarrow EW ZZjj significance: 5.5σ (4.3 σ expected)

Statistical Fit

Process	$\ell\ell\ell\ell jj$	$\ell\ell u u jj$
$\overline{\ }$ EW $ZZjj$	20.6 ± 2.5	12.3 ± 0.7
QCD ZZjj	77 ± 25	17.2 ± 3.5
$QCD \ ggZZjj$	13.1 ± 4.4	3.5 ± 1.1
Non-resonant- $\ell\ell$	1-1	21.4 ± 4.8
WZ	_	22.8 ± 1.1
Others	3.2 ± 2.1	1.2 ± 0.9
Total	114 ± 26	78.4 ± 6.2
Data	127	82

 \triangleright Inclusive EW + Strong fiducial cross sections measured for $4\ell jj$ and $\ell\ell\nu\nu jj$ separately

	Measured fiducial σ [fb]	Predicted fiducial σ [fb]
$\ell\ell\ell\ell jj$	$1.27 \pm 0.12(\text{stat}) \pm 0.02(\text{theo}) \pm 0.07(\text{exp}) \pm 0.01(\text{bkg}) \pm 0.03(\text{lumi})$	$1.14 \pm 0.04(\text{stat}) \pm 0.20(\text{theo})$
$\ell\ell u u jj$	$1.22 \pm 0.30 \text{(stat)} \pm 0.04 \text{(theo)} \pm 0.06 \text{(exp)} \pm 0.16 \text{(bkg)} \pm 0.03 \text{(lumi)}$	$1.07 \pm 0.01(\text{stat}) \pm 0.12(\text{theo})$

Observation of EW ZZjj (3/3)

- \triangleright EW and strong ZZjj measurements: $\mu_{EW}=1.35\pm0.34$ and $\mu_{strong}=0.96\pm0.22$
 - \rightarrow EW ZZjj significance: 5.5 σ (4.3 σ expected)

Statistical Fit

Process	$\ell\ell\ell\ell jj$	$\ell\ell u u jj$
EW ZZjj	20.6 ± 2.5	12.3 ± 0.7
QCD ZZjj	77 ± 25	17.2 ± 3.5
$QCD \ ggZZjj$	13.1 ± 4.4	3.5 ± 1.1
Non-resonant- $\ell\ell$	9—9	21.4 ± 4.8
WZ	_	22.8 ± 1.1
Others	3.2 ± 2.1	1.2 ± 0.9
Total	114 ± 26	78.4 ± 6.2
Data	127	82

 \triangleright Inclusive EW + Strong fiducial cross sections measured for $4\ell jj$ and $\ell\ell\nu\nu jj$ separately

	Measured fiducial σ [fb]	Predicted fiducial σ [fb]
$\ell\ell\ell\ell jj$	$1.27 \pm 0.12(\text{stat}) \pm 0.02(\text{theo}) \pm 0.07(\text{exp}) \pm 0.01(\text{bkg}) \pm 0.03(\text{lumi})$	$1.14 \pm 0.04(\text{stat}) \pm 0.20(\text{theo})$
$\ell\ell u u jj$	$1.22 \pm 0.30(\text{stat}) \pm 0.04(\text{theo}) \pm 0.06(\text{exp}) \pm 0.16(\text{bkg}) \pm 0.03(\text{lumi})$	$1.07 \pm 0.01(\text{stat}) \pm 0.12(\text{theo})$

Physics Letters B

Volume 816, 10 May 2021, 136190

Observation of photon-induced W⁺W⁻ production in pp collisions at $\sqrt{s}=13$ TeV using the ATLAS detector

The ATLAS Collaboration*

Observation of $\gamma\gamma \rightarrow WW$ Phys. Lett. B 816 (2021) 136190

Observation of $\gamma\gamma \rightarrow WW$

- ➤ Photon-photon scattering: incoming protons intact or fragment outside acceptance
- $\gg WW \rightarrow ev\mu\nu$ very clean; opposite charged ℓ , no other tracks
- > Analysis selects $\ell^{\pm}\ell^{\mp}$ events, fulfilling:

$$p_{\mathrm{T}}^{\ell 1}>$$
 27 GeV, $p_{\mathrm{T}}^{\ell 2}>$ 20 GeV, $m_{\ell \ell}>$ 30 GeV, SR: $p_{\mathrm{T}}^{e\mu}>$ 30 GeV

 \triangleright Expect $n_{trk} = 0$ additional tracks from $\gamma \gamma \rightarrow WW$

 $\sigma_{\rm fid} = 3.13 \pm 0.31 ({\rm stat}) \pm 0.28 ({\rm syst}) \, {\rm fb}$

Phys. Lett. B 816 (2021) 136190

- > Backgrounds constrained using CRs: $p_{\rm T}^{e\mu} < 30$ GeV and $n_{\rm trk} \geq 1$
- Background-only hypothesis rejected with 8. 4σ significance

	Signal region	
$n_{ m trk}$	n_{trk} =	= 0
$p_{ m T}^{e\mu}$	> 30 GeV	< 30 GeV
$\gamma\gamma \to WW$	174 ± 20	45 ± 6
$\gamma\gamma o \ell\ell$	5.5 ± 0.3	39.6 ± 1.9
Drell–Yan	4.5 ± 0.9	280 ± 40
$qq \rightarrow WW$ (incl. gg and VBS)	101 ± 17	55 ± 10
Non-prompt	14 ± 14	36 ± 35
Other backgrounds	7.1 ± 1.7	1.9 ± 0.4
Total	305 ± 18	459 ± 19
Data	307	449

LHC / HL-LHC Plan

Update 07 March, 2022

HL-LHC CIVIL ENGINEERING:

DEFINITION EXCAVATION BUILDINGS

EW Vjj & VVjj measurements in global BSM fits

John Ellis, Maeve Madigan, Ken Mimasu, Veronica Sanz & Tevong You JHEP 04 (2021) 278 $SU(3)^{5}: EWPO + Diboson + Higgs$

The ATLAS EW Zjj measurements helps constrain di-boson C_W in particular with

Unfolding to particle-level

EW Zjj

EPJC 81 (2021) 163

Prospect at HL-LHC: EW ZZjj

- VBS offers a sensitive means to search for new phenomena related to anomalies in the weak-boson self-interactions
- ➤ Supersymmetry, Little Higgs, or Composite Higgs models, offer alternative EWSB mechanisms that would manifest as **deviations** from the SM VBS production cross-sections at high energies.
- ▶ Precision measurements of high-mass VBS ZZ production also allow an almost modelindependent measurement of the Higgs boson width

Summary

Today: a suite of full Run-2 ATLAS results on vector-boson fusion and scattering

Conclusion: pp $\rightarrow Vjj$ and VVjj via VBF and VBS topologies provide:

- > Acute exploration of electroweak symmetry breaking in all aspects
- > Self-couplings of the vector gauge bosons are completely specified in the SM, as are the couplings of the Higgs boson to the vector bosons once the Higgs mass is known.
- > Sensitivity to searches for new phenomena (physics beyond the Standard Model)
- > Crucial input to Effective Field Theory (EFT) fits
- ➤ Typically, the associated **EW** production cross sections are very small → small signal swamped by large & challenging backgrounds
 - > Precision analyses only recently possible due to large dataset acquired at Run-2
 - ➤ Most measurements are statistics limited
- $\succ 5\sigma$ observation established for major VBF and VBS sensitive processes & channels
 - > Focus shifting to **precision** differential cross section measurements
 - Fiducial and differential cross sections are the most model independent characterization of the events (from detector to particle-level fiducial phase space)
- > Exciting prospect at the LHC with the larger datasets of Run-3 and beyond at HL-LHC

Acknowledgement and Thank You

Figures, slides and comments: Dag Gillberg & Stephen Weber

Comments and suggestions: Bing Li, Philippe Calfayan, Patrick Rieck and Danika MacDonell

Funding agencies in Canada

Covered in other DIS2022 talk by Ruchi Gupta

Observation of EW $Z(\ell\ell)\gamma jj$

- \triangleright EW $Z\gamma jj$ measured in the $ee\gamma jj$ and $\mu\mu\gamma jj$ channels
- > Analysis targets **VBF topology** + $Z \rightarrow \ell\ell + \gamma$: $p_{\rm T}^{j1} > 50$ GeV, $p_{\rm T}^{j2} > 50$ GeV, $p_{\rm T}^{\gamma} > 25$ GeV, $m_{jj} > 150$ GeV, $\Delta y_{jj} > 1$ $m_{\ell\ell} > 40$ GeV, and $m_{\gamma\ell\ell} + m_{\ell\ell} > 2m_Z$ (veto $Z \rightarrow \gamma\ell\ell$)
- \triangleright Main backgrounds: Strong $Z\gamma jj$, Z+jets with fake γ , $t\bar{t}\gamma$
- ightharpoonup Key observable: $Z\gamma$ centrality $\xi_{\ell\ell\gamma}$ and SR: $\xi_{\ell\ell\gamma} < 0.4$
- \succ Fit performed to m_{jj} spectrum
- > Observation of **EW** $Z(\ell\ell)\gamma jj$ with significance well above 5σ ($\sim 10\sigma$) Ξ
- > Fiducial cross section is measured:

$$\sigma_{EWZ\gamma}^{fid} = 4.49 \pm 0.58 \, fb$$

$$\sigma^{pred}_{EWZV} = 4.73 \pm 0.27 fb$$

- > The EW $Z\gamma jj$ + strong cross section is measured to be:
 - $20.6^{+1.4}_{-1.2}$ fb (predicted: $20.4^{+2.6}_{-2.0}$ fb)

First Observation of EW $Z(\nu\nu)\gamma jj$

- \triangleright Strategy: target VBF topology+ $E_{\mathrm{T}}^{\mathrm{miss}}$:
- $p_{\rm T}^{j1} > 60$ GeV, $p_{\rm T}^{j2} > 50$ GeV, $\Delta \phi_{jj} < 2.5$ $N_{\gamma} = 1$, $N_{\ell} = 0$, $m_{jj} > 250$ GeV, γ between jets (*i.e.* central)
- Multiple control regions to constrain backgrounds
- \succ EW $Z(\nu\nu)\gamma jj$ signal established with 5.2σ (5.1σ) observed (expected)
- > Measurements:

EW
$$\mu_{Z\gamma} = 1.03 \pm 0.25$$

 $\sigma_{\rm fid} = 1.31 \pm 0.29 \, {\rm fb}$

> In addition to EW $Z\gamma jj$ measurements, also sets limits on invisible / partially inv. decays of Higgs boson (VBF H→invisible) $\frac{2}{5}$

Extra backup slides

Strategy at the LHC

"Produce as many collisions as possible as fast as possible"

The ATLAS Detector

Electromagnetic and Hadronic Calorimeters

Charged particle tracking system

Muon spectrometer

Dataset

EW *Zjj* Eur. Phys. J. C 81 (2021) 163

EW *ZZjj* arXiv.2004.10612

 $\sqrt{s} = 13 \text{ TeV}$

Run2 period: 2015 - 2018

Total recorded: 147 fb⁻¹

VBF, VBS, and Triboson Cross Section Measurements Status: February 2022

Systematic Uncertainties of EW Zjj

Multivariate Discriminants (MDs) EW ZZjj

```
MD input variables \ell\ell\ell\ell jj
m_{jj}
\Delta y_{jj}
p_T^{j1} and p_T^{j2}
y_{j1} \times y_{j2}
p_T^{Zi} with m_{Zi} closet to M_Z (i = 1,2)
y_{Z1} and y_{Z2}
p_T^{\ell\ell\ell\ell}
m_{\ell\ell\ell\ell}
p_T^{\ell 3}
\frac{|\sum \vec{p}_T|}{\sum p_T} with sum over the two Z's and two jets
```

```
MD input variables \ell\ell\nu\nu jj
m_{jj}
\Delta y_{jj}
p_T^{j2}
y_{j1} \times y_{j2}
E_T^{miss}
E_T^{\text{miss}}- significance
\frac{|\sum \vec{p}_T|}{\sum p_T} with sum over the two Z's and two jets
\Delta\eta_{\ell\ell}
\Delta\phi_{\ell\ell}
\Delta R_{\rho\rho}
m_{\ell\ell}
p_T^{\ell 1} and p_T^{\ell 2}
```

Multivariate Discriminants (MDs) based on Gradient Boosted Decision Tree algorithm are trained with simulated events using TMVA framework to separate EW ZZjj from backgrounds

Control Regions for ZZjj analysis

