DIS2022: XXIX International Workshop on Deep-Inelastic Scattering andRelater Subjects 02 – 06 May 2022 Santiago de Compostela, Spain

Latest results on rare decays at the NA62 experiment at CERN

On behalf of the NA62 collaboration

Artur Shaikhiev (artur.shaikhiev@cern.ch)

Outline

- * NA62 experiment overview
- Lepton flavour/number Violating decays
- * Heavy Neutral Leptons (HNL) searches:
 - * HNL production: $K^+ \rightarrow e^+ N, K^+ \rightarrow \mu^+ N$
- * $K^+ \rightarrow \mu^+ \nu \nu \nu$, $K^+ \rightarrow \mu^+ \nu X$
- Summary

- * Main goal is measure ultra rare kaon decay $K^+ \rightarrow \pi^+ \nu \nu$ with 10% precision
- * SM prediction: $BR(K^+ \to \pi^+ \nu \bar{\nu}) = (8.4 \pm 1.0) \times 10^{-11}$ [Buras et al., JHEP 1511 (2015) 033]
- * Experimental value $BR(K^+ \to \pi^+ \nu \bar{\nu}) = (17.3^{+11.5}_{-10.5}) \times 10^{-11}$ [E949/E787 PRL 101 (2008) 191802]

 $BR(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4stat.} \pm 0.9_{syst.}) \times 10^{-11}$

[NA62, JHEP06 (2021) 093]

* Sensitive to New Physics

27 institutes, ~200 participants form: Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna, Fairfax-GMU, Ferrara, Firenze,Frascati, Glasgow, Lancaster, Liverpool, Louvain, Mainz, Moscow, Napoli, Perugia, Pisa, Prague, Protvino, Roma I, Roma II, San Luis Potosi, Torino, TRIUMF, Vancouver UBC

3

See R.Fantechi's talk for more details about $K^+ \rightarrow \pi^+ \nu \nu$

- Timing between sub detectors O(100 ps)
- Kaon ID and direction (KTAG, GTK)
- Particle ID and direction (STRAW, RICH, LKr, HASC, MUV): μ⁺ rejection O(10⁷)
- Photon veto (LAV, LKr, IRC, SAC): $\pi^0 \rightarrow \gamma \gamma$ rejection O(10⁷)

Data collection

Trigger streams:

- $\pi\nu\nu$ trigger: 1 track, γ/μ veto
- Control trigger: samples for normalization, background estimation
- 3-track triggers: samples for lepton flavour violation study

Lepton Number/Flavour Violation

- * Lepton number (L) and lepton flavour (L_e, L_μ, L_τ) are conserved quantities in the Standard Model
- Violation of these quantities is a clear indication of Physics Beyond the Standard Model

Seesaw mechanism provides a source of LNV through the exchange of Majorana neutrinos as in $0\nu\beta\beta$ decay [JHEP 0905 (2009) 030]

Lepton flavour violation

LFV processes can occur via the exchange of leptoquarks, of a Z'boson, or in SM extensions with light pseudoscalar bosons [JHEP 10 (2018) 148, Rev. Mod. Phys. 81, 1199 (2009), JHEP 01 (2020)158]

Searches for $K^+ \rightarrow \pi^-(\pi^0)e^+e^+$

Normalise to the SM K⁺ $\rightarrow \pi^+e^+e^$ with BR = (3.00±0.09)x10⁻⁷. 11041 candidates are found world's largest sample

New result: arXiv:2202.00331 [hep-ex]

Result for K⁺ $\rightarrow \pi$ ⁻e⁺e⁺

Mode	Lower region	Upper region	Masked region	Signal region
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	0.9	—	=	—
$K^+ \to \pi^+\pi^- e^+ \nu$	3.3	-	-	
$K^+ \to \pi^+ \pi_D^0$		0.02	0.01	-
$K^+ ightarrow \pi^0_D e^+ u$	3.7 ± 0.7	1.20 ± 0.24	1.23 ± 0.25	0.29 ± 0.06
$K^+ ightarrow e^+ \nu e^+ e^-$	0.7 ± 0.1	0.76 ± 0.15	0.47 ± 0.09	0.14 ± 0.03
Total	8.6 ± 0.9	1.98 ± 0.39	1.71 ± 0.34	0.43 ± 0.09
Data	8	1	1	0

 Blind analysis method — validate background estimation in control regions.

* In signal region $n_{exp} = 0.43 \pm 0.09$, $n_{obs} = 0$

Set upper limit

BR(K⁺→ π ⁻e⁺e⁺) < 5.3x10⁻¹¹ at 90% CL

A factor of 4 improvement with respect to previous NA62 result with partial data set (2017 only): PLB 797 (2019) 134794

Result for $K^+ \rightarrow \pi^-\pi^0 e^+ e^+$

Mode	Control region	Signal region
$K^+ \to \pi^+ \pi^0 \pi_D^0$	0.16 ± 0.01	0.019
$K^+ \rightarrow \pi^+ \pi_D^0 \gamma^-$	0.06 ± 0.01	0.004
$K^+ ightarrow \pi^0_D e^{\overline{+}} u \gamma$	0.05 ± 0.02	—
$K^+ \to \pi^+ \pi^0 e^+ e^-$	0.01	0.001
Pileup	0.20 ± 0.20	0.020 ± 0.020
Total	0.48 ± 0.20	0.044 ± 0.020
Data	1	0

- Blind analysis method validate background estimation in control regions.
- * In signal region $n_{exp} = 0.044 \pm 0.020$, $n_{obs} = 0$

Set upper limit BR(K⁺→π⁻π⁰e⁺e⁺) < 8.5x10⁻¹⁰ at 90% CL

First search for this LNV decay!

Other LNV/LNF decays

NA62 LNV/LNF summary

	Previous UL @ 90% CL	NA62 UL @ 90%CL		
$K^+ \rightarrow \pi^- \mu^+ \mu^+$	8.6×10^{-11}	4.2×10^{-11}	2017 data \rightarrow improved by factor 2 Phys. Lett. B 797 (2019) 134794	
$K^+ \rightarrow \pi^- e^+ e^+$	6.4×10^{-10}	5.3×10^{-11}	Run1 data \rightarrow improved by factor 12	
$K^+ \to \pi^- \pi^0 e^+ e^+$	no limit	8.5×10^{-10}	Run1 data	
$K^+ \rightarrow \pi^- \mu^+ e^+$	5.0×10^{-10}	4.2×10^{-11}	2017+2018 data \rightarrow improved by factor 12	
$K^+ \rightarrow \pi^+ \mu^- e^+$	5.2×10^{-10}	6.6×10^{-11}	2017+2018 data \rightarrow improved by factor 8 - PRL 127 131802 (2021)	
$\pi^0 \rightarrow \mu^- e^+$	3.4×10^{-9}	3.2×10^{-10}	2017+2018 data \rightarrow improved by factor 13	
$K^+ \rightarrow \pi^+ \mu^+ e^-$	1.3×10^{-11}	-	sensitivity similar to previous search	
$\pi^0 ightarrow \mu^+ e^-$	3.8×10^{-10}	-	sensitivity similar to previous search	
$K^+ \rightarrow \mu^- \nu e^+ e^+$	2.1×10^{-8}	-	Ongoing analysis on 2017 data: SES $\sim 1 imes 10^{-10}$	
$K^+ \rightarrow e^- \nu \mu^+ \mu^+$	no limit		Ongoing analysis on 2017 data: SES $\sim 5 imes 10^{-11}$	

Heavy Neutral Leptons (HNL)

- * The vMSM (Asaka et al., Phys.Lett.B 620 (2005) 17) is an extension of the SM to explain simultaneously neutrino oscillations, dark matter and baryon asymmetry of the Universe.
 - * SM + 3 right-handed sterile neutrinos:
 - * N_1 : $m_1 \sim 10 \text{ keV}$ dark matter candidate
 - * N_{2,3}: m_{2,3} ~ 100MeV 100 GeV baryon asymmetry
- * GeV-scale HNLs can be observed via their production and decay (both searches are possible at NA62)

Heavy Neutral Leptons (HNL)

- * Triggers: the main $K_{\pi\nu\nu}$ for $K^+ \rightarrow e^+ \nu_H$, Control/400 for $K^+ \rightarrow \mu^+ \nu_H$
- * Number of kaon decays in the fiducial volume: (3.52±0.02)×10¹² for $K^+ \rightarrow e^+ v_H$, (1.14±0.02)×10¹⁰ for $K^+ \rightarrow \mu^+ v_H$
- Peak search in the missing mass distribution (P_K-P₁)², P_K is kaon four-momentum, P₁ is lepton four-momentum, use GTK and STRAW

HNL Results

- No signal observed
- Full 2016-18 (RunI) data set is analyzed
- * Close related study: $K^+ \rightarrow l^+ \nu \nu \nu$ and $K^+ \rightarrow l^+ \nu X$, X is invisible: predict background from MC simulation

$K^+ \rightarrow \mu^+ \nu \nu \nu$ and $K^+ \rightarrow \mu^+ \nu X$

$\underline{K^+ \rightarrow \mu^+ \nu \nu \nu}$

- Very rare in the Standard Model, BR: 1.6×10⁻¹⁶ [JHEP1610 (2016) 039]
- The current limit: <2.4×10⁻⁶ [E949, PRD94 (2016) 032012]
- Search region m²_{miss} > 0.1 GeV²/c⁴
 (optimized to extract strongest limit):
 - * Observed events: 6894
 - Expected from MC: 7549±928
 - Set upper limit: 1.0×10⁻⁶ at
 90%CL in the SM framework
- <u>K+ \rightarrow μ + ν X, X is scalar or vector</u>
- * [PRL124 (2020) 041802]
- * Mass range $10-370 \text{ MeV}/c^2$
- Compare expected and observed number of event for each mass
 - hypothesis and extract limit.

$K^+ \rightarrow \mu^+ \nu X$ results

<u>K+ \rightarrow μ + ν X, X is scalar or vector</u>

- No signal observed
- The limits obtained in the scalar model are stronger than those in the vector model due to larger mean m²_{miss} value.

- The NA62 experiment is a powerful laboratory to make searches for exotic particles/processes
- * World best upper limits on LNV/LNF kaon decays have been set
- * World best upper limits on HNL mixing parameters have been set
- * World best upper limit on BR(K+ $\rightarrow \mu^+\nu\nu\nu)$ has been set
- NA62 will continue to take data until LongShutdown3(LS3) resumed in 2021