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The flair of the Higgsflare: motivation
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These works show us that SMEFT vs HEFT is more than linear 
vs nonlinear realisations… 

SMEFT exists if:    

And   is analytic in a certain region 

Consequences: 

  

Double 0 of   

Odd derivatives vanish (even derivatives of    ) 

∃h* → ℱ(h) = 0

ℱ(h)

∃F(h) ⟹ ℱ(h) = F(h)2

ℱ(h)

F(h)
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Looking for Physics Beyond the SM

SMEFT:  LHC’s favourite
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B( |H |2 )(∂ |H |2 )2 − V( |H |2 ) + 𝒪(∂4)

ℒSMEFT = A( |H |2 ) |∂H |2 +

ℒSMEFT = ℒSM + ∑
n,i
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Alternatively: HEFT

Take EwChL, enhanced by a flare function:
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ℒHEFT =
1
2

∂μh∂μh − V(h) +
1
2

ℱ(h) ∂μwi∂μwj (δij +
wiwj

v2 − w2 )

ℱ(h) = 1 + ∑ an ( h
v )

n
In HEFT, h  and w’s are 

independent



LHC Global fits
In the absence of 
new particles, our 
main effort goes 
into constraining 
SMEFT coefficients 
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fitmaker, smefit, et al.



The SM is falsified by finding a nonzero 

Wilson Coefficient 

How is the SMEFT falsified?
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SMEFT vs HEFT

A deviation from the SM, if small 
enough, can always be 

parametrised by the Warsaw basis 
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SMEFT vs HEFT

A deviation from the SM, if small 
enough, can always be 

parametrised by the Warsaw basis FALSE
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SMEFT vs HEFT

A deviation from the SM, if small 
enough, can always be 

parametrised by the Warsaw basis 
Not strictly 

true
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Here is where HEFT kicks in
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|∂H |2 +
1
2

B( |H | )2(∂( |H |2 ))2 →
v2

4
ℱ(h)⟨DμU†DμU⟩ +

1
2

(∂hHEFT)2

dhHEFT = 1 + (v + hSMEFT)2B(hSMEFT) dhSMEFT

Write SMEFT 
in HEFT form:



Falsifying SMEFT

Relevant SMEFT operators for the Higgs 
sector (dim 6): 

   

At high energies they decouple and only 
one survives:  

6

irrelevant total derivative and a couple of terms proportional to @2H and @2H†. However, the classical equations of motion
of H trade the derivative operators for @2H (and its conjugate) by operators without derivatives, up to correction of higher
dimension in 1/⇤2. In this way, the A-type of operators can be removed from the theory and transformed into B-operators at
fixed dimension 6, 8, etc. Employing this freedom, we will set �ABSM = 0 and just keep the leading operator, A = ASM = 1.
Hence SMEFT can be formulated in polar coordinates (h,!a) as

Lpolar�SMEFT =
v2

4

✓
1 +

h

v

◆2

h@µU
†@µUi+

1

2

✓
1 + (v + h)2B(h)

◆
(@h)2 , (13)

instead of Eq. (7). The change of variables in the Higgs field, h = h(h1) of Eq. (10) then becomes

dh1 =

✓
1 + (v + h)2B(h)

◆1/2

dh . (14)

This change determines F in the form

F(h1) =

✓
1 +

h(h1)

v

◆2

, (15)

with h implicitly given [28] by the relation

h1 =

Z
h

0

✓
1 + (v + h)2B(h)

◆1/2

dh . (16)

B. Explicit computation with SMEFT’s power expansion of B(|H|
2)

1. Order 6 in the SMEFT counting

The SMEFT Lagrangian is an alternative parametrization of SM deviations, that assumes the SM symmetries and fields, and
particularly assumes the traditional doublet structure for the Higgs field. The Higgs sector of this Lagrangian was introduced
in Eq. (1), and it can be written more generally as,

LSMEFT = LSM +
1X

n=5

X

i

c(n)
i

⇤n�4
O

(n)

i
. (17)

At dimension 6, there are three operators of the SMEFT Warsaw basis [29] that directly distort the Standard Model’s Elec-
troweak Symmetry Breaking Lagrangian, which written in terms of the Higgs field doublet H appropriate for SMEFT are
(@2

⌘ ⇤)

OH = (H†H)3 , OHD = (H†DµH)⇤(H†DµH) ,

OH⇤ = (H†H)⇤(H†H) . (18)

They can of course be reexpressed in terms of the singlet field for the Higgs boson via (H†H) = (h + v)2/2 (in polar
coordinates this is manifestly gauge-independent). Those three operators are actually all that is needed for Higgs-Goldstone
boson scattering up to dimension 6 in the SMEFT counting. Moreover, OHD breaks custodial symmetry so that it can be
counted as higher order due to the small size of the corrections to Peskin-Takeuchi observables in the SM at LEP.

We would like to remark that not only at dimension-6 but also at dimension-8 there is an additional operator with two deriva-
tives acting only on a product of Higgs doublets. However, these terms violate custodial symmetry and they actually contribute
to an independent type of HEFT operator, Longhitano’s a0 Lagrangian term [30, 31]. Consistently, this a0 operator is related
to the experimentally suppressed oblique T–parameter. Thus, we will no longer consider this type of custodial breaking
operators in this article, although a similar study can be worked out if this kind of corrections needed to be included.

In turn, OH is not a derivative operator, so that it does not contribute to the flare function that we are pursuing (though it does
a�ect the Higgs self-coupling, namely the Higgs SM potential, and the vacuum expectation value, important near threshold,
its impact in the TeV region is much smaller than that of the derivative operator).

In summary, only theOH⇤ operator contributes toF(h) at orderO(⇤�2). Moreover, it has been shown in [32], by geometric
arguments, that only one operator is needed at this order, which is consistent with our discussion. The rest of the electroweak
operators of the Warsaw basis that the reader may be wondering about,

OW = ✏ijkW
⌫i

µ
W ⇢j

⌫
Wµk

⇢
, OHW = (H†H)W i

µ⌫
Wµ⌫i ,

OHB = (H†H)Bµ⌫B
µ⌫ , OHWB = (H†⌧ iH)W i

µ⌫
Bµ⌫ , (19)
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The role of cHBox in SMEFT
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7

are necessary only if one intends to couple the transverse electroweak gauge bosons [25, 33]), but they are of no concern for
our purposes of studying the TeV-region electroweak-symmetry breaking Lagrangian that requires only, by the equivalence
theorem [34, 35] in the TeV region, the Goldstone bosons ' longitudinal WL, ZL . Further, a generic basis could also contain
an operator of the form @µ(H†H)@µ(H†H), but this is eliminated in the standard Warsaw treatment because it is equivalent
to OH⇤ in Eq. (18) up to a total divergence, in analogy to Eq. (12),

(X2)⇤(X2) = �@µX
2@µX2 + @µ(X

2@µX2)
| {z }
surface term

, (20)

or in terms of the h singlet,

OH⇤ = (H†H)⇤(H†H) = �@µ(H
†H)@µ(H†H) + @µ(...) = �(h+ v)2@µh@

µh+ @µ(...) . (21)

Therefore, the only contributing dimension-six operator of the Warsaw basis that preserves custodial symmetry is

OH⇤ = (H†H)⇤(H†H) = �@µ(H
†H)@µ(H†H) , (22)

that in the Lagrangian appears multiplied by the Wilson coe�cient cH⇤ and is suppressed by two powers of the high-energy
scale ⇤ respect to the dimension-4 Lagrangian. Comparing with Eq. (1) we read the (constant) values A(|H|

2) = 1 and
B(|H|

2) = �2 cH⇤
⇤2 , that contain no fields.

2. The role of cH⇤ in SMEFT and bounds on its size from experimental data

Because SMEFT has been used for a few years now to analyze LHC data, there already exist bounds on the coe�cient
cH⇤ from Run 2 of the machine (even if the associated operator OH⇤ is quite elusive in LHC fits); we now recall those
bounds.

The best overall constraints on the dimension-6 basis arise from Higgs-sector observables (production and decay) [36, 37],
but it is only when combined with other electroweak channels that this cH⇤ coe�cient can be well constrained. The reason
for this is the way that OH⇤ enters in the B piece of the Lagrangian in Eq. (1). Its e�ect is to change the Higgs wave-function
normalization

LSMEFT =
1

2

✓
1�

2cH⇤v2

⇤2

◆
@µh@

µh + ... (23)

instead of the Higgs couplings to other particles, that are not directly a�ected. Hence, the contribution of this operator to
any on-shell production or decay process of a single Higgs boson appears as a kinematics-independent shift, as evident from
Eq. (23). In particular, for the reference value of ⇤ = 1 TeV used in most analysis, this overall shift for the several processes
considered, whether decay width or production cross-section, becomes

�H, SMEFT

�H, SM
/

�H, SMEFT

�H, SM
/ 1 + 2

cH⇤v2

⇤2
= 1 + 0.12cH⇤ , (24)

which was already numerically observed by the ATLAS collaboration and reported, for example in Table 1 of [38]. It is obvious
that the numbers there, between 0.115 and 0.125, just reflect the exact 0.12 factor of Eq. (24). This is true in any process
involving only one on-shell Higgs boson (as will also be the case in our Eq. (90) below); but events with two or multiple h
particles such as Eq. (91) and following have di�erent dependences on cH⇤ and will allow a cleaner separation within SMEFT.
Also, the cross sections above in �H, SMEFT

�H, SM
are implicitly understood as their narrow Higgs-width approximation, where one

Higgs is produced on-shell and then cascades into the final products. For o�-shell Higgs studies the dependency would be
di�erent.

In consequence, this kinematically not very exciting OH⇤ operator is often overlooked and few works actually constrain it.
Still, the works of Ellis et al. [36] and Ethier et al. [37] o�er quite interesting bounds on cH⇤, that at 95% confidence level,
and rounding o� to the precision of the leading digit of the uncertainty, read as follows,

cH⇤ ' �0.3± 0.7 (individual) (25)
cH⇤ ' �1± 2 (marginalized) . (26)

Both are compatible with the Standard Model value cH⇤ = 0.

3. Operator of order 8 in the SMEFT counting

Going one order further in the 1/⇤2 power counting makes the SMEFT parametrization more interesting [39–42]. In
particular, the full dimension-8 basis in SMEFT was recently published in [43, 44]. To find the dimension-8 operator that
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The Flare function in SMEFT
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Finally, we can use Eq. (11) and (33) to obtain F(h1),

F(h1) =

✓
1 +

h1

v

◆2

+
2v3cH⇤

⇤2

✓
1 +

h1

v

◆✓
h3

1

3v3
+

h2

1

v2
+

h1

v

◆
+O

⇣c2
H⇤
⇤4

⌘
=

= 1 +

✓
h1

v

◆✓
2 + 2

cH⇤v2

⇤2

◆
+

✓
h1

v

◆2 ✓
1 + 4

cH⇤v2

⇤2

◆
+

+

✓
h1

v

◆3 ✓
8
cH⇤v2

3⇤2

◆
+

✓
h1

v

◆4 ✓
2
cH⇤v2

3⇤2

◆
, (34)

which expresses the expansion coe�cients of F in terms of the SMEFT Wilson coe�cient (in the philosophy of the appendix
of [46]),

a1 = 2a = 2
⇣
1 + v2

cH⇤
⇤2

⌘
, a2 = b = 1 + 4v2

cH⇤
⇤2

, a3 =
8v2

3

cH⇤
⇤2

, a4 =
2v2

3

cH⇤
⇤2

. (35)

These relations expose the inclusion of SMEFT into HEFT: the ai coe�cients, independent parameters in the latter, are
correlated in SMEFT up to a given order, as all of the first four ai are given in terms of only one Wilson coe�cient cH⇤. This
feature has been suggested as a handle to discern, from upcoming experimental data, whether SMEFT will be applicable later
on (in the presence of any separation from the SM values a = b = 1). Measurements of the !! ! nh scattering process
(see Section V) would allow the determination of the ai and can probe the SMEFT-predicted correlations [47] (or the SM
ones [25, 48]). In the absence of such correlations, it is plausible that a HEFT formulation would be needed.

However, this di�erence can be put into question in the presence of unnatural Wilson coe�cients. If the dimension-8
operators contribute at an order similar to that of the dimension-6 operator, because the coe�cients are not of order 1 or
because ⇤ is not large enough to significantly suppress them, additional SMEFT parameters would appear in the expressions
of Eq. (35), decorrelating the ai coe�cients and voiding the analysis. Therefore, though perhaps orientative, given that
naturalness may have already failed as a safe guiding principle in view of the light Higgs boson mass, more robust criteria
that helps systematize the correlations to distinguish SMEFT from HEFT have been provided, and to them we turn in the next
section.

At last, the position of the symmetric point h⇤ that satisfies F(h⇤) = 0 is always given by h(h1) = �v (with |H| =
(h + v)/

p
2), as seen directly from Eq. (15). In turn, the position of the symmetric point in HEFT coordinates becomes

displaced from its SM value hSM

⇤ = �v by an O(⇤�2) SMEFT correction,

h⇤
v

=
h1(h)

v

����
h=�v

= �1 +
cH⇤v2

3⇤2
, (36)

where we use the relation h1 = h1(h) in Eq. (32). An alternative derivation of this result is presented in Appendix D.

A simple way to obtain this result is to observe that Eq. (15) for the flare function has a double zero when the SMEFT
field is at the symmetric point of the Standard Model, h = �v ! �1 (normalizing the field by v). Substitution in Eq. (32)
immediately yields Eq. (36). Curiously, if one would look at Eq. (34) instead, the position of one of the zeroes would be
h1 = �1 = �v, as is obvious from the first line. This is an e�ect of the reexpansion in Eq. (33): none of the four zeroes of
Eq. (34), a fourth-order polynomial, seems to be double; in the limit ⇤ ! 1, two of them escape to infinity and the other two
merge to give the correct one of Eq. (36). This means that, at face value and inside a small interval of width suppressed by
1/⇤2, Eq. (34) can violate positivity (see subsection IV A 1 below). This is corrected by the next ⇤�4 order.
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Finally, we can use Eq. (11) and (33) to obtain F(h1),

F(h1) =

✓
1 +

h1

v

◆2
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2v3cH⇤
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1 +

h1

v
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h3

1

3v3
+
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1
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h1

v

◆
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H⇤
⇤4

⌘
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= 1 +

✓
h1

v
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2 + 2

cH⇤v2
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◆
+

✓
h1

v

◆2 ✓
1 + 4

cH⇤v2

⇤2

◆
+

+

✓
h1

v

◆3 ✓
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cH⇤v2
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cH⇤v2

3⇤2

◆
, (34)
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. (35)
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correlated in SMEFT up to a given order, as all of the first four ai are given in terms of only one Wilson coe�cient cH⇤. This
feature has been suggested as a handle to discern, from upcoming experimental data, whether SMEFT will be applicable later
on (in the presence of any separation from the SM values a = b = 1). Measurements of the !! ! nh scattering process
(see Section V) would allow the determination of the ai and can probe the SMEFT-predicted correlations [47] (or the SM
ones [25, 48]). In the absence of such correlations, it is plausible that a HEFT formulation would be needed.

However, this di�erence can be put into question in the presence of unnatural Wilson coe�cients. If the dimension-8
operators contribute at an order similar to that of the dimension-6 operator, because the coe�cients are not of order 1 or
because ⇤ is not large enough to significantly suppress them, additional SMEFT parameters would appear in the expressions
of Eq. (35), decorrelating the ai coe�cients and voiding the analysis. Therefore, though perhaps orientative, given that
naturalness may have already failed as a safe guiding principle in view of the light Higgs boson mass, more robust criteria
that helps systematize the correlations to distinguish SMEFT from HEFT have been provided, and to them we turn in the next
section.

At last, the position of the symmetric point h⇤ that satisfies F(h⇤) = 0 is always given by h(h1) = �v (with |H| =
(h + v)/
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2), as seen directly from Eq. (15). In turn, the position of the symmetric point in HEFT coordinates becomes

displaced from its SM value hSM

⇤ = �v by an O(⇤�2) SMEFT correction,

h⇤
v

=
h1(h)
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, (36)

where we use the relation h1 = h1(h) in Eq. (32). An alternative derivation of this result is presented in Appendix D.

A simple way to obtain this result is to observe that Eq. (15) for the flare function has a double zero when the SMEFT
field is at the symmetric point of the Standard Model, h = �v ! �1 (normalizing the field by v). Substitution in Eq. (32)
immediately yields Eq. (36). Curiously, if one would look at Eq. (34) instead, the position of one of the zeroes would be
h1 = �1 = �v, as is obvious from the first line. This is an e�ect of the reexpansion in Eq. (33): none of the four zeroes of
Eq. (34), a fourth-order polynomial, seems to be double; in the limit ⇤ ! 1, two of them escape to infinity and the other two
merge to give the correct one of Eq. (36). This means that, at face value and inside a small interval of width suppressed by
1/⇤2, Eq. (34) can violate positivity (see subsection IV A 1 below). This is corrected by the next ⇤�4 order.

34

up to a given order, and the field appearing therein should be interpreted as h1. This will allow us to transform and remove
any operator with only Higgs fields and two derivatives on the same field, for example to express Om

2
:= hm@2h in terms of

O
n

1
= hn(@µh)2. First, we will show that the former ones can always be converted in the second ones up to a total derivative.

For this, we will once more use partial integration (Leibniz’s rule) to rewrite a Lagrangian term of this form as

O
n

1
= �nO

n

1
� O

n+1

2
+ @µ(hn+1@µh) , (B4)

which, as n > 0 entails n 6= �1, and up to the now omitted total divergence, can be recast in the form

O
n

1
= hn(@µh)

2 = �
1

n+ 1
O

n+1

2
= �

1

n+ 1
hn+1@2h. (B5)

Thus, we find that all the possible O
n

1
operators of our Lagrangian (n � 0) can be always rewritten in the O

m

2
form (up to

a total derivative) and viceversa. Specifically, up to a total derivative,

(h+ v)m @µh @
µh = �

⇥
(v + h)m+1

� vm+1
⇤

m+ 1
@2h , (B6)

This is equivalent to Eq. (22) but written in terms of the singlet and now for operators with arbitrarily large n powers of h; we
can use it to rewrite more general SMEFT operators in the HEFT form. 9

Moving on, we transform and remove this second type of operators including @2h that are generated in SMEFT; we will make
use of the EoM of the Higgs field, which causes a di�erence that is pushed to higher orders in the expansion that are not included
anyway, so that at fixed order they are equivalent. The EoM (within the electroweak sector alone) reads [19, 21, 88, 89]

@2h =
(v + h)

2
hDµU

†DµUi � V 0(h) , (B7)

with Higgs potential (ignorable at high s) given by V (h) = VSM (h) = m2

h

⇣
�

v
2

8
+ h

2

2
+ h

3

2v
+ h

4

8v2

⌘
at lowest order in the

1/⇤2 SMEFT expansion, i.e., the tree-level SM potential, and V 0
0
(h) = m2

h

⇣
h+ 3h

2

2v
+ h

3

2v2

⌘
. For further detail, see Eqs. (3)

and (10) in [88], where one can indeed see that we also get additional fermion operators whose discussion is beyond the scope
of this article. Thus, we can make use of the EoM of the classical Higgs field to simplify the operators in the quantum e�ective
action � (which amounts to appropriate field redefinitions in the generating functional).

The construction derived from a OH⇤-type operator can then be transformed as, up to a total derivative,

(v + h)n(@µh)
2 = �

1

n+ 1
[(v + h)n+1

� vn+1] @2h (B8)

= �
(v + h1) [(v + h1)n+1

� vn+1]

2(n+ 1)
hDµU

†DµUi +
1

n+ 1
[(v + h1)

n+1
� vn+1] V 0(h1) ,

with h1 now understood as the HEFT field. In the simplest non-trivial case, n = 2, the term �L = cH⇤OH⇤ yields, up to a
total derivative,

�L =
cH⇤
⇤2

OH⇤ = �
cH⇤
⇤2

(v + h)2(@µh)
2

=
cH⇤(v + h)

6⇤2
[(v + h)3 � v3] hDµU

†DµUi �
cH⇤
3⇤2

[(v + h)3 � v3]V 0(h) . (B9)

With this, the SMEFT Lagrangian up to dimension-6 can be rewritten in the form

LSMEFT =
v2

4

✓
1 +

h1

v

◆2

hDµU
†DµUi +

1

2

✓
1�

2cH⇤(h1 + v)2

⇤2

◆
(@µh1)

2
� V (h1)

=
v2

4
F(h1)hDµU

†DµUi+
1

2
(@µh1)

2
� V (h)�

cH⇤ [(v + h1)3 � v3]

3⇤2
V 0(h1) . (B10)

with F the flare function shown in the main text, given at this order by

F(h1) = 1 +
2h1

v

✓
1 +

cH⇤v2

⇤2

◆
+

h2

1

v2

✓
1 +

4cH⇤v2

⇤2

◆
+

h3

1

v3

✓
8cH⇤v2

3⇤2

◆
+

h4

1

v4

✓
2cH⇤v2

3⇤2

◆
.

(B11)

Satisfactorily, this result is in agreement with earlier investigations [47, 64], although now we are extending the relation up
to O(h4

1
). Terms of O(h5

1
) in F(h1) and higher start at O(⇤�4) or above, and they are thus suppressed in the SMEFT

counting.

9 Another useful relation for this type of partial integration simplifications is given by the identity: �L = A @µB @µC =
1

2

�
(@2A)BC �A (@2B)C �AB (@2C)

�
+ @µ�µ, with the irrelevant total derivative term given by �µ = ((@µA)BC � A (@µB)C �

AB (@µC))/2. This relation is essentially the position-space representation of the relation pBpC = 1

2
(p2

A
� p2

B
� p2

C
), which is the square of the

momentum conservation equation with all pA,B,C incoming, pB + pC = �PA. By means of it one also can rewrite the On

1
Lagrangian terms into O

m

2

operators up to a total derivative (although it is a little less e�cient than the simplifications in the main text).
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2. Result at dimension-8

We now quote the result of adding the operator of dimension 8 in Eq. (II B 3); the calculation follows along the same lines
so we only quote the combined result for the flare function F , which reads

F(h1) = 1 +

✓
h1

v

◆ 
2 + 2

c(6)
H⇤v

2

⇤2
+ 3

(c(6)
H⇤)

2v4

⇤4
+ 2

c(8)
H⇤v

4

⇤4

!
+

+

✓
h1

v

◆2
 
1 + 4

c(6)
H⇤v

2

⇤2
+ 12

(c(6)
H⇤)

2v4

⇤4
+ 6

c(8)
H⇤v

4

⇤4

!
+

+

✓
h1

v

◆3
 
8
c(6)
H⇤v

2

3⇤2
+ 56

(c(6)
H⇤)

2v4

3⇤4
+ 8

c(8)
H⇤v

4

⇤4

!
+

+

✓
h1

v

◆4
 
2
c(6)
H⇤v

2

3⇤2
+ 44

(c(6)
H⇤)

2v4

3⇤4
+ 6

c(8)
H⇤v

4

⇤4

!
+

+

✓
h1

v

◆5
 
88

(c(6)
H⇤)

2v4

15⇤4
+ 12

c(8)
H⇤v

4

5⇤4

!
+

+

✓
h1

v

◆6
 
44

(c(6)
H⇤)

2v4

45⇤4
+ 2

c(8)
H⇤v

4

5⇤4

!
+O(⇤�6) . (37)

Note that the bracket in each line provides the corresponding aj up to O(⇤�4). Also, to make the order manifest and avoid
confusion, we have denoted cH⇤ by c(6)

H⇤ in this paragraph and below whenever there might be any confusion.

As for the symmetric point around which SMEFT is built, Eq. (36) takes a further correction of O(⇤�4) that may take it
away from the Standard Model value. Again, Eq. (15) shows that the SU(2)⇥ SU(2) fixed-point point condition F(h⇤) = 0
has always the solution h = �v, which in the in HEFT coordinates up to O(⇤�4) SMEFT corrections is given by

h⇤
v

=
h1(h)

v

����
h=�v

= �1 +
c(6)
H⇤v

2

3⇤2
+
⇣
(c(6)

H⇤)
2 + 2c(8)

H⇤
⌘ v4

10⇤4
. (38)

where we used the relation between SMEFT and HEFT coordinates at this order:

h1 = h +
c(6)
H⇤
3⇤2

�
v3 � (v + h)3

�
+

((c(6)
H⇤)

2 + 2c(8)
H⇤)

10⇤4

�
v5 � (v + h)5

�
+ O

✓
1

⇤6

◆
. (39)

III. GEOMETRIC AND ANALYTIC DISTINCTION BETWEEN HEFT AND SMEFT

This section succinctly exposes the precise theoretical conditions allowing to discern between SMEFT and HEFT, compiling
the main results of several articles [16, 19–22] in their geometrical aspects and adding an extended analytical discussion about
the function F of our own. Much of the past confusion between the two EFT formulations arises from the fact that there
are two coordinate systems to describe the same system of fields, for this, the San Diego group advocated for employing a
geometric perspective to be able to make coordinate-invariant statements.

A. Flat SM geometry

The O(4) components in the scalar field of Eq. (2) used for the SM Higgs sector, � = (�1,�2,�3,�4) are taken to represent
coordinates in a (momentarily flat, later in the next subsection curved) geometric manifold M. � contains the Higgs field and
the three “eaten” Goldstone bosons and has a Lagrangian (turning o� gauge fields)

LSM =
1

2
@µ� · @µ��

�

4
(� · �� v2)2 . (40)

In these Cartesian coordinates the global O(4) transformations should act linearly

� ! O� , OTO = 1 . (41)

The field breaks the global electroweak symmetry O(4) down to O(3) by acquiring a vacuum expectation value

h� · �i = v2 ,

The Flare function in SMEFT

Naturally 
extend to 
dim8 and 

further, and 
to quadratic 

terms



Multihiggs production

At high energies ( ) we can rely on the equivalence 
theorem

≤ ≈ 1TeV

�18

21

which, in HEFT coordinates, becomes6

VSM(h) =
m2

h

2

✓
h2 +

h3

v
+

h4

4v2

◆
, (84)

with v2 = �µ2/� and m2

h
= 2|µ|2.

• The typical potential with the correlations obtained there in Appendix C will need to have an expansion which, up to
O(⇤�2) in SMEFT needs to have the form

V (h) =
m2

h

2


h2 +

h3

v
(1 + ✏) +

h4

v2

✓
1

4
+

3

2
✏

◆
+

3✏

4

h5

v3
+

✏

8

h6

v4

�
. (85)

It is possible to see that including the custodial-invariant SMEFT operator without derivatives, OH , in Eq. (18) one
gets the potential,

VSMEFT(H) = µ2H†H + �(H†H)2 �
cH
⇤2

(H†H)3 , (86)

which reproduces the structure of the coe�cients in Eq. (85). By expanding H around its minimum, the SMEFT poten-
tial in HEFT coordinates, finally produces the structure in Eq. (85) with m2

h
= �2µ2 (1 + 3✏/4) and 2h|H|

2
i =

v2 = v2
0
(1� 3✏/4), where we made use of the lowest order vev v2

0
= �µ2/� and the O(⇤�2) correction ✏ =

�2cHv4/m2

h
⇤2 = µ2cH/(�2⇤2). Notice that, for sake of clarity in the illustration, here we have taken cH⇤ = 0,

so there is no Higgs field renormalization. (Notice also that treating only terms in the potential, i.e. non-derivative
couplings implies, up to a constant shift, h = h1)

4. Example of potentials V where SMEFT is not applicable

An example of a potential which can not be written as a SMEFT is

V (H) = VSM(H) +
"

H†H
(87)

with " a constant small enough so as to avoid unsettling the potential away from h = 0 by a finite fraction of v now there is no
symmetric O(4) point where the function is analytic, there is a divergence at the origin. Consistently with the symmetric-point
criterion, SMEFT cannot be used: this model does not reproduce Eq. (85).

V. ww ! n⇥ h FOR ALL n IN HEFT AS THE TELLTALE PROCESS:
EXTRACTION OF F(h) EXPANSION COEFFICIENTS

In this section we will indicate how to extract the coe�cients of the flare function F in a process where n Higgses are
produced in the final state.

h1

hn

h2

... = �
n!an

2vn
s

FIG. 2: The ai coe�cients of the flare function F control the contact piece of !! ! nh processes. A large number n of
Higgs bosons in the final state would appear as a flare of them in the detector read out, whence the nickname of the function.

First we start by noticing that the measurement of the !+!�
! h total cross section gives us information the value of the

first nontrivial coe�cient of F(h), a1 = 2a. The value of a is well constrained and hence we move on to identify the processes
where the subsequent coe�cients of the flare function can be measured.

Generalizing to n > 1 Higgs bosons in the final state, the contributions to the amplitude will come from the contact diagram
and the t-channel and u-channel diagrams. The contact diagram will give a contribution of n!san/(2vn) whereas the t/u-
channel will produce a string proportional to all the coe�cients of F(h), am, for 1  m  n� 1. So that, for generic n, the

6 In this case, the correlations of table III in appendix C below are trivially satisfied, because the variables there defined �v3 = �v4 = . . . 0 all vanish.
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amplitude will take the form

T!!!n⇥h =
s

vn

p(n)X

i=1

0

@ i(q1, q2, {pk})

|IP[n]i|Y

j=1

aIP[n]j
i

1

A , (88)

where  i(q1, q2, {pk}) are functions depending on all four-momenta involved in the process (the two Goldstone bosons having
momenta q1 and q2 and the k-th Higgs boson with momentum pk) which will be made explicit below. These functions
contribute to the angular integration used to obtain the total cross section of the process. The symbol IP[n] represents the
integer partitions of n and it is a collection of p(n) vectors with length |IP[n]i| each, and components IP[n]j

i
. For example,

for n = 4 (see Eq. (94) given shortly), IP[4] = {{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}} and hence p(4) = 4, |IP[4]i| =
{1, 2, 2, 3, 4} and IP[4]1

2
= 3. In that case the amplitude takes the form

T!!!4⇥h =
s

v4
�
4!a4 + a3a1 2(q1, q2, {pk}) + a2

2
 3(q1, q2, {pk}) + a4

1
 4(q1, q2, {pk})

�
. (89)

The strategy is to fit to data each an with increasing n starting form the one-Higgs boson production, then fit two-Higgs
boson production, etc. We have developed a small program for the computation of the amplitudes T!!!n⇥h that can be
provided by the authors on request. We present in the next subsection V A the amplitudes for the production of one, two, three
and four Higgs bosons.

A. Amplitudes of !! ! n⇥ h with n = 1, 2, 3, 4

Formally, the amplitude !! ! h with the LO HEFT Lagrangian in Eq. (3) is given by

T!!!h = �
a1s

2v
. (90)

There is no on-shell cross section associated to this amplitude (because of the impossibility to satisfy four-momentum con-
servation with three on-shell massless particles). The amplitude cannot be used o�-shell because the Lagrangian of the EFT
has been constructed on-shell. Therefore we move on and quote the amplitude with two Higgs bosons in the final state, that is
simply [26]

T!!!hh =
s

v2
(a2 � b) =

s

v2

✓
a2
1

4
� a2

◆
, (91)

but it will be useful to introduce some notation to systematize what follows and give it in a more involved way:

T!!!hh =
s

v2

✓
a2
1

((z1 � 2)f1 + (z2 � 2)f2 + 2)

4
� a2

◆
(92)

where we define, in the rest frame, the three-momentum fractions fi ⌘ ||~pi||/
p
s (s = 4||~q1||2) for each Higgs boson; the

angular functions zi ⌘ 2 sin2(✓i/2) with ✓i being the angle between the i-th Higgs boson and the first ! Goldstone boson
momenta, ~q1 (that is, z1 = 1� cos ✓, z2 = 1 + cos ✓ as usual in a two-body problem with t and u channels). We also define
zij ⌘ 2 sin2(✓ij/2), ✓ij being the angle between the i-th and j-th Higgs bosons.

With this notation, the tree-level amplitude with a larger number of Higgs bosons can be obtained (by automated means);
the one with three Higgs bosons in the final state is relatively manageable even when given in full,

T!!!hhh = �
s

8v3

 
a31

h
4f1f

2

3

✓
z23(f1z23 � 1)

f3(z3 � 2f1z23) + f2z2
+

z13(f1z13 � 1)

f1(z1 � 2f3z13) + f3z3

◆
+

+ 2f3

✓
f1

✓
z23 � 2f2z23

�2f1f3z23 + f2z2 + f3z3
+

z13 � 2f1z13
�2f1f3z13 + f1z1 + f3z3

+ z13 + z23

◆
+ 3(z3 � 2)

◆
+

+
2f1f2z12(2f1(f2z12 � 1)� 2f2 + 1)
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This means that taking ratios of cross-sections, the only parameter that encodes BSM physics in SMEFT in the relevant TeV
energy region drops out, and what remains is a pure prediction, independent of the BSM physics scale, but dependent only on
the structure of SMEFT

�(!! ! nh)

�(!! ! mh)
= independent of cH⇤ . (97)

The ratios become weakly dependent on the value of the parameter when order-1/⇤4, dimension-8 terms are included, as
seen in Eq. (37). But if the SMEFT counting is sensible, this should be small and a reasonable prediction is possible. It will
be explored numerically in a follow-up document. This can be a way of distinguishing whether SMEFT is applicable or not,
from “low” energy data, without access to the underlying UV completion of any new physics.

VI. FINDING OUT WHETHER THE F(h) FUNCTION HAS A ZERO

Among the precise conditions that allow to express a HEFT as a SMEFT, thoroughly studied in [22], the first necessary
requirement among those spelled out in subsection III C is the existence of an O(4) symmetric point h = h⇤. This requires a
zero, that recalling the Taylor expansion in Eq. (4) yields the relation

F(h⇤) = 1 +
1X

n=1

an
hn

⇤
vn

= 0 .

In this section we will try to address what can be done, empirically and assuming that any UV physics is not known or
understood (bottom-up approach) to improve the knowledge of whether such zero h⇤ could be present.

A. Finding the O(4) fixed point candidate by looking at the polynomial approximation of F(h)

1. From one or two Higgs production

Knowledge of the ai coe�cients is rapidly evolving, as they directly correspond to the i scaling cross sections respect to
the Standard Model ones. A data-driven constraint for a1 based on LHC run-I data can be found in [65]; at 2�, those authors
conclude that a 2 [0.7, 1.23]. A bound on b was originally obtained by examining the absence of a resonance in WLWL

scattering below 700 GeV [66] (according to [58], the dispersive methods used for obtaining these bounds have a 10-20%
uncertainty on the position of the resonance). Direct ATLAS and CMS work has improved those earlier limits, and the latest
bounds on the first two ai coe�cients are discussed next in subsection VI A 2; those coe�cients a1 = 2a and a2 = b remain
the only ones with current experimental constraints.

In Figure 3, a straight line showsthe SMEFT correlation obtained in the first column of Table I. The rest of the plane
corresponds at most to HEFT theory. The SM is the point in the center of the figure. Finally the 95% confidence bands for
the a1 and a2 parameters are presented as dashed lines with the numbers taken from the caption of Table II.

2. Multiple Higgs production: testing the SMEFT-induced correlations over the HEFT function F coe�cients

We employ the correlations found earlier in Table I, in conjunction with current direct experimental bounds on deviations
of a1 and a2 from their Standard Model values, to propagate the information to other coe�cients of F that are presently
unconstrained provided SMEFT holds.

These are then quoted in Table II, an interesting new contribution of this article to the phenomenology of HEFT. If, for
example, a3 is measured to be di�erent from zero, this would immediately establish new physics (which is known); but
additionally, if it exceeds the bounds given in the table, it would mean that SMEFT correlations are being violated and the
EFT has to be extended into HEFT.

The constrains in the first column assume the validity of SMEFT up to order 1/⇤2, O(⇤�2); because of the tight experi-
mental bounds on the WW ! h coupling a1 = 2a, the remaining an couplings are strongly limited. If SMEFT is considered
up to 1/⇤4, O(⇤�4) (as we do in the second column), the WW ! hh coupling a2 = b becomes independent, as seen in
Table I; its experimental bounds are then also an input. Being poorly measured so far, it introduces a large uncertainty in the
higher correlations. Thus, the bounds on the second column of Table II are much looser. Those large uncertainties can be
much reduced by improving the experimental knowledge of a2: a decrease of its uncertainty by an order of magnitude scales
almost linearly and makes these errors roughly a factor 10 smaller.

Notice that the values in third column in Table II are similar for ATLAS and CMS. The reason is that when the experimental
uncertainty of �a2 is very large, at the practical level, its only limitation comes from the constraint |�a2|  5|�a1|, this is,

23

The amplitude with four Higgs bosons in the final state is complicated enough that it is worth to quote only one of the terms,
corresponding to the ordering (p1, p2, p3, p4) of the four h momenta in the final state, with the other 23 permutations of these
momenta not given. This one term reads
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⇥
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+

+ 4a22
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!
+ perm. (94)

and the 23 permutations of the 4 final-state Higgs momenta pi are to be taken in the computer code by invoking the amplitude
with exchanged arguments. Permuting the i-th Higgs with the j-th Higgs will interchange zi $ zj , fi $ fj and zik $ zjk.
(The indices of the ai coe�cients are of course not to be permuted, as they correspond to the terms in the Lagrangian, not the
external boson legs).

A check of these amplitudes is to take the limit to the Standard Model by setting the ai coe�cients to the values a1 = 2,
a2 = 1, a3 = 0 and a4 = 0. Because the SM is renormalizable and unitary, these derivative terms must vanish, as indeed our
computation reproduces, having Eq. (91) and Eq. (93) above as well as Eq. (94) satisfy

TSM

!!!hh
= 0 ; TSM

!!!hhh
= 0 ; TSM

!!!hhhh
= 0 , (95)

where conservation of momentum has been used.

B. Cross-sections

Equations (90)-(94) and successive for an increasing number of Higgs bosons are what is needed for a phenomenological
extraction of the ai coe�cients in the TeV region. From single Higgs production, through Eq. (90), a1 is already constrained
(see subsection VI A 2), so current work focuses on two-Higgs processes which allows to address a2 = b in Eq. (91). The a1
appears squared (and is known to 10% precision) and a2 appears linearly, interference in this latter amplitude is possible and
the sign of the deviations of a2 from the SM value is at hand.

With a1 and a2 already constrained, it would become feasible to in turn constrain a3 (null in the Standard Model) with
Eq. (93) and so forth for higher coe�cients with higher-point processes with more bosons in the final state. Since each
successive amplitude is linear in the highest appearing coe�cient, their signs can be determined if a separation from the SM
value is found.

An important correlation that allows to ascertain whether SMEFT is at play comes from the observation that at order 1/⇤2

all the deviations from the SM in a1 through a4 stem from the same operator (see Eq. (35)). Note also that the amplitudes
in subsec. V A are the net deviations from the Standard Model in HEFT, since their SM prediction is zero. Then, all those
amplitudes are necessarily linear in the same Wilson coe�cient

T!!!nh /

⇣ s

vn�2⇤2

⌘
cH⇤ in SMEFT up to O

�
⇤�2

�
. (96)

Work in progress….
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amplitude will take the form

T!!!n⇥h =
s

vn

p(n)X

i=1

0

@ i(q1, q2, {pk})

|IP[n]i|Y

j=1

aIP[n]j
i

1

A , (88)

where  i(q1, q2, {pk}) are functions depending on all four-momenta involved in the process (the two Goldstone bosons having
momenta q1 and q2 and the k-th Higgs boson with momentum pk) which will be made explicit below. These functions
contribute to the angular integration used to obtain the total cross section of the process. The symbol IP[n] represents the
integer partitions of n and it is a collection of p(n) vectors with length |IP[n]i| each, and components IP[n]j

i
. For example,

for n = 4 (see Eq. (94) given shortly), IP[4] = {{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}} and hence p(4) = 4, |IP[4]i| =
{1, 2, 2, 3, 4} and IP[4]1

2
= 3. In that case the amplitude takes the form

T!!!4⇥h =
s

v4
�
4!a4 + a3a1 2(q1, q2, {pk}) + a2

2
 3(q1, q2, {pk}) + a4

1
 4(q1, q2, {pk})

�
. (89)

The strategy is to fit to data each an with increasing n starting form the one-Higgs boson production, then fit two-Higgs
boson production, etc. We have developed a small program for the computation of the amplitudes T!!!n⇥h that can be
provided by the authors on request. We present in the next subsection V A the amplitudes for the production of one, two, three
and four Higgs bosons.

A. Amplitudes of !! ! n⇥ h with n = 1, 2, 3, 4

Formally, the amplitude !! ! h with the LO HEFT Lagrangian in Eq. (3) is given by

T!!!h = �
a1s

2v
. (90)

There is no on-shell cross section associated to this amplitude (because of the impossibility to satisfy four-momentum con-
servation with three on-shell massless particles). The amplitude cannot be used o�-shell because the Lagrangian of the EFT
has been constructed on-shell. Therefore we move on and quote the amplitude with two Higgs bosons in the final state, that is
simply [26]

T!!!hh =
s

v2
(a2 � b) =

s

v2

✓
a2
1

4
� a2

◆
, (91)

but it will be useful to introduce some notation to systematize what follows and give it in a more involved way:

T!!!hh =
s

v2

✓
a2
1

((z1 � 2)f1 + (z2 � 2)f2 + 2)

4
� a2

◆
(92)

where we define, in the rest frame, the three-momentum fractions fi ⌘ ||~pi||/
p
s (s = 4||~q1||2) for each Higgs boson; the

angular functions zi ⌘ 2 sin2(✓i/2) with ✓i being the angle between the i-th Higgs boson and the first ! Goldstone boson
momenta, ~q1 (that is, z1 = 1� cos ✓, z2 = 1 + cos ✓ as usual in a two-body problem with t and u channels). We also define
zij ⌘ 2 sin2(✓ij/2), ✓ij being the angle between the i-th and j-th Higgs bosons.

With this notation, the tree-level amplitude with a larger number of Higgs bosons can be obtained (by automated means);
the one with three Higgs bosons in the final state is relatively manageable even when given in full,
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amplitude will take the form

T!!!n⇥h =
s

vn

p(n)X

i=1

0

@ i(q1, q2, {pk})

|IP[n]i|Y

j=1

aIP[n]j
i

1

A , (88)

where  i(q1, q2, {pk}) are functions depending on all four-momenta involved in the process (the two Goldstone bosons having
momenta q1 and q2 and the k-th Higgs boson with momentum pk) which will be made explicit below. These functions
contribute to the angular integration used to obtain the total cross section of the process. The symbol IP[n] represents the
integer partitions of n and it is a collection of p(n) vectors with length |IP[n]i| each, and components IP[n]j

i
. For example,

for n = 4 (see Eq. (94) given shortly), IP[4] = {{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}} and hence p(4) = 4, |IP[4]i| =
{1, 2, 2, 3, 4} and IP[4]1
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The strategy is to fit to data each an with increasing n starting form the one-Higgs boson production, then fit two-Higgs
boson production, etc. We have developed a small program for the computation of the amplitudes T!!!n⇥h that can be
provided by the authors on request. We present in the next subsection V A the amplitudes for the production of one, two, three
and four Higgs bosons.

A. Amplitudes of !! ! n⇥ h with n = 1, 2, 3, 4

Formally, the amplitude !! ! h with the LO HEFT Lagrangian in Eq. (3) is given by
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There is no on-shell cross section associated to this amplitude (because of the impossibility to satisfy four-momentum con-
servation with three on-shell massless particles). The amplitude cannot be used o�-shell because the Lagrangian of the EFT
has been constructed on-shell. Therefore we move on and quote the amplitude with two Higgs bosons in the final state, that is
simply [26]
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but it will be useful to introduce some notation to systematize what follows and give it in a more involved way:
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where we define, in the rest frame, the three-momentum fractions fi ⌘ ||~pi||/
p
s (s = 4||~q1||2) for each Higgs boson; the

angular functions zi ⌘ 2 sin2(✓i/2) with ✓i being the angle between the i-th Higgs boson and the first ! Goldstone boson
momenta, ~q1 (that is, z1 = 1� cos ✓, z2 = 1 + cos ✓ as usual in a two-body problem with t and u channels). We also define
zij ⌘ 2 sin2(✓ij/2), ✓ij being the angle between the i-th and j-th Higgs bosons.

With this notation, the tree-level amplitude with a larger number of Higgs bosons can be obtained (by automated means);
the one with three Higgs bosons in the final state is relatively manageable even when given in full,
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Tωω→nh = f(a1, …, an)

In HEFT:



Falsifying SMEFT: correlations
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TABLE I: Correlations between the ai HEFT coe�cients necessary for SMEFT to exist, at order ⇤�2 and ⇤�4. They are given in terms
of �a1 := a1 � 2 = 2a� 2 and �a2 := a2 � 1 = b� 1. This way, all the objects in the table vanish in the Standard Model, with all the
equalities becoming 0 = 0. Notice that the r.h.s. of each identity in the second column shows the O(⇤�4) corrections to the relations of

the first column. The third one assumes the perturbativity of the SMEFT expansion.

Correlations Correlations ⇤�4 Assuming

accurate at order ⇤�2 accurate at order ⇤�4 SMEFT perturbativity

�a2 = 2�a1 |�a2|  5|�a1|

a3 = 4

3
�a1
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4

3
�a1

�
= 8

3
(�a2 � 2�a1)� 1

3
(�a1)

2

a4 = 1

3
�a1
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a4 �

1

3
�a1

�
= 5

3
�a1 � 2�a2 + 7

4
a3 = those for a3, a4, a5, a6

= 8

3
(�a2 � 2�a1)� 7

12
(�a1)

2

a5 = 0 a5 = 8

5
�a1 �

22

15
�a2 + a3 = all the same

= 6

5
(�a2 � 2�a1)� 1

3
(�a1)

2

a6 = 0 a6 = 1

6
a5

c. Resulting testable correlations Table I collects the correlations between the ai coe�cients of HEFT that we have
worked out at order ⇤�2 and ⇤�4 (further correlations are possible from the higher odd derivatives of F vanishing, and
all become a bit weaker numerically if yet higher orders in 1/⇤ are studied, by the need of introducing further ai coe�-
cients).

The correlation in the first row, second column of Table I originates in a quadratic one 2(�a2�2�a1)�
3

4

�
a3 �

4

3
�a1

�
=

�
�3�a1 +

5

2
�a2 �

9

8
a3
�2 with two solutions for a3, a small and a large one. In keeping near the SM value a3 = 0 we take

this second one and reexpand to linearize in a3 so that it can be related to a1 and a2 in a straightforward manner; the di�erence
is more suppressed than O(⇤�4) in the SMEFT expansion.

The remarkable property of these equations is that they are independent of the SMEFT parameters c(n)
H⇤, that is, they are

tests of the SMEFT theory framework itself, up to a given order in 1/⇤, that cannot be rewritten away in terms of its parame-
ters.

These equations can be experimentally tested looking for the consistency of SMEFT. Given tight experimental bounds on
a1, these relations (and those from F � 0) can already predict how the next HEFT coe�cients will look like if SMEFT is
valid. This we will delay until subsection VI A 2 below.

The 1/⇤2 relations in the first column of Table I, all hanging from �a1, are rather constraining given that one-Higgs
production is well known. Those in the second column, as they depend also on �a2, which is much less well measured, are
not very useful; but they can be further tightened by imposing perturbativity of the SMEFT expansion.

d. Perturbativity constraints Perturbativity can be deployed by recalling that, at O(⇤�4),
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. (74)

For clarity, let us shorten notation for the rest of the paragraph, writing

�a1 = 2x+ 3x2 + 2y
�a2
2

= 2x+ 6x2 + 3y = �a1 + 3x2 + y . (75)

In general, there are two free parameters, x and y. What perturbativity suggests is that each of the terms of the O(⇤�4) should
not be larger than the O(⇤�2) term (this is akin to the Cauchy criterion for convergence of a sequence, but of course there
is no guarantee that it will be satisfied at a fixed order; again, it is only a perturbativity argument, similar to the one in [41]).
Taking this at face value, it must be that 3x2

 2|x| (by the way, this means that |x|  2/3, that however is of little value as
experimental constraints are much tighter) and that |y| < |x|.
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TABLE I: Correlations between the ai HEFT coe�cients necessary for SMEFT to exist, at order ⇤�2 and ⇤�4. They are given in terms
of �a1 := a1 � 2 = 2a� 2 and �a2 := a2 � 1 = b� 1. This way, all the objects in the table vanish in the Standard Model, with all the
equalities becoming 0 = 0. Notice that the r.h.s. of each identity in the second column shows the O(⇤�4) corrections to the relations of

the first column. The third one assumes the perturbativity of the SMEFT expansion.
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c. Resulting testable correlations Table I collects the correlations between the ai coe�cients of HEFT that we have
worked out at order ⇤�2 and ⇤�4 (further correlations are possible from the higher odd derivatives of F vanishing, and
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Falsifying SMEFT
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Experimental application

Ideally future colliders will be able to 
measure multihiggs production at a good 
enough accuracy to test these correlations.  

Already a measurement of double H 
production at HL-LHC would provide 
greater insight on the a1/a2 values.
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Experimental application: state of the art

Measurements 
by ATLAS and 

CMS have 
produced bounds 

on a1 and a2:
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FIG. 3: SMEFT at order 1/⇤2 predicts the correlation a2 = 2a1 � 3 from the first column in Table I, which is plotted against
the current 95% confidence intervals for these two HEFT parameters [67, 68].

TABLE II: We input the 95% confidence-level experimental bounds a1/2 = a 2 [0.97, 1.09] [67] and, for the middle column,
a2 = b = 2V 2 [�0.43, 2.56] [69] (see the second erratum), by the ATLAS collaboration (top row) or the CMS collaboration (bottom
row) interval of a2 = b = 2V 2 [�0.1, 2.2] [68]. With them we have calculated and show here the expected corresponding 95% CL

intervals for several WLWL ⇠ !! ! nh coupling, an, employing the relations of Table I. Violations of the intervals in the first column
would sow doubt on the SMEFT adequacy at O(⇤�2); surpassing any in the third column, on its perturbativity; and those of the middle
column would void SMEFT of much significance as an EFT. They can be further tightened with improved experimental data for 2V .

Consistent SMEFT Consistent SMEFT Perturbativity of

range at order ⇤�2 range at order ⇤�4 ⇤�4 SMEFT

�a2 2 [�0.12, 0.36] ATLAS ATLAS

a3 2 [�0.08, 0.24] a3 2 [�4.1, 4.0] a3 2 [�3.1, 1.7]

a4 2 [�0.02, 0.06] a4 2 [�4.2, 3.9] a4 2 [�3.3, 1.5]

a5 = 0 a5 2 [�1.9, 1.8] a5 2 [�1.5, 0.6]

a6 = 0 a6 = a5 a6 = a5

CMS CMS

a3 2 [�3.2, 3.0] a3 2 [�3.1, 1.7]

a4 2 [�3.3, 3.0] a4 2 [�3.3, 1.5]

a5 2 [�1.5, 1.3] a5 2 [�1.5, 0.6]

a6 = a5 a6 = a5

min(5a�
1
,�5a+

1
)  �a2  max(�5a�

1
, 5a+

1
). Since e�ectively the bounds just depend on the allowed values for a1 we are

obtaining the same outcomes for ATLAS and CMS in the third column.

B. When Schwarz’s Lemma guarantees a function’s zero

In this subsection we examine and adapt a known result from complex-variable analysis that guarantees the existence of a
zero of a complex function: in the case of F(h) this would be an O(4) fixed point candidate around which SMEFT could be
built.

The information that we would eventually need to have at hand to exploit the theorem would be a number of coe�cients of
the Taylor series, depending on any future accelerators energy reach (subsec. V). To avoid too large a mathematical digression,
Schwarz’s Lemma and two of its corollaries are detailed in Appendix A. What can guarantee a zero ofF is the second corollary.
The needed hypotheses are as follows:

• First, the function F(h) (extended to be a complex function of a complex h argument, in units of v throughout this
whole section) needs to be analytic inside a disc of radius |h| = R around the vacuum h = 0. This disk has to be large
enough to reach the possible symmetric point (i.e., h = h⇤ or, in SMEFT, |H| = 0) from the observed vacuum (i.e.,

a1/2 = a ∈ [0.97,1.09]
a2 ∈ [−0.43, 2.56](AT)

∈ [−0.1, 2.2](CMS)



Conclusions and outlook
The Higgs potential is a big open question at LHC 

We have shown here a procedure to rule out the SMEFT, 
independent of the finding of new particles 

A first clue might be accessible at HL-LHC (through double H 
production)  

We can use properties of the flare function to extract further  
insights on low energy physics (see paper)  

We can associate the flare function being HEFT-like or 
SMEFT-like with concrete BSM scenarios
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If there is new physics

TeV parton-level collisions sit here
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Beyond the Higgs potential: flare function F

The LHC sits here
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