A general heavy-flavor mass scheme for charge-current DIS at NNLO and beyond

& implications for EW phenomenology

Tim Hobbs, Fermilab and IIT

4th May 2022

...with Jun Gao, Pavel Nadolsky, ChuanLe Sun and C.-P. Yuan

Based on: Phys. Rev. D105 (2022) 1, L011503 [arXiv: 2107.00460]

pQCD at NNLO → next-generation PDF extractions

- theory accuracy now/approaching (N)NNLO in α_s for typical processes
 - → NLO EW corrections, especially for LHC data wg3, K. Xie

- fit a wide assortment of data from various underlying processes; scales
 - → CC DIS (e.g., HERA) important complement in CT; needs NNLO treatment

CC DIS: motivation

- charged-current DIS: central component in several next-generation QCD expt. programs
 - \rightarrow vA, forward physics: DUNE, FASERv
 - → precision QCD: EIC, LHeC

example: DUNE target sensitivity to $\delta_{\text{CP}} \to \text{control over}$ CC DIS for $E_{\nu} \sim \text{few GeV}$

• W-exchange processes probe unique combinations of in-nucleon flavor currents; e.g., nucleon s(x, Q)

[arXiv: 2006.12520]

Bjorken x

Phys. Rev. D103 (2021) 7, 074023

CC DIS data cover wide range in Q; higher pQCD accuracy needed for perturbative stability, PDF extractions

evolution schemes as general problem in QCD

- higher order(s) in pQCD: improved accuracy in Wilson coeff., control over scale dependence
- at given fixed order, nontrivial relationship with chosen heavy-quark (HQ) scheme

- \rightarrow fixed flavor-number (FFN): $Q \gtrsim M_Q$; flavor-creation (FC) processes with $n_f = 3$
- → zero-mass (ZM) variable flavor-number: $Q \gg M_Q$; flavor-excitation (FE) processes with $n_f = 4$
- 2 paradigms adapted to different regimes w.r.t. HQ mass scale; **∃ interpolation scheme**?

general-mass schemes: S-ACOT-χ

variable flavor-number scheme to interpolate between ZM and FFN regimes: ACOT

Aivazis, Collins, Olness, Tung; PRD50 (1994) 3085-3118

- → systematic approach to incorporating HQ mass dependence
- introduce subtraction term(s) to eliminate double counting between FC/FE contributions:

$$\begin{cases} Q \gtrsim M_Q \implies \text{(SUB)} \approx \text{(FE) such that } \mathbf{n}_f = 3 \text{ FC dominates} \\ Q \gg M_Q \implies \text{(SUB)} \approx \text{(FC) such that } \mathbf{n}_f = 4 \text{ FE dominates} \\ \chi(x,Q,M_Q) = x \left(1 + \frac{1}{Q^2} [\sum_{\text{F.S.}} M_Q]^2\right) \end{cases}$$

- "simplified" ACOT (S-ACOT): neglect full HQ mass dependence in FE graphs
- \circ S-ACOT- χ : smooth HQ thresholds, include approx. HQ mass dependence: $C_i(x) \to C_i(\chi)$
- formulation necessitates careful tracking of diagrams to organize calculation correctly

template calculation: NC DIS at NNLO

Guzzi, Nadolsky, Lai, Yuan Phys. Rev. D86, 053005 (2012)

[arXiv: 1108.5112]

• at structure-function level, factorization allows separation of coeff. functions, PDFs:

$$F(x,Q) = \sum_{i=1}^{N_f^{fs}} e_i^2 \sum_{a=0}^{N_f} \left[C_{i,a} \otimes \Phi_{a/p} \right] (x,Q) \qquad (F = F_{2,L})$$

• compute S-ACOT- χ coeff. functions: expand in α_s each term in auxiliary partonic struct. func.:

$$F_{i,b}(\widehat{x},Q) = \sum_{a=0}^{N_f} \left[C_{i,a} \otimes \Phi_{a/b} \right] (\widehat{x},Q)$$

$$\longrightarrow \text{ matching terms order-by-order,}$$

$$\begin{cases}
C_{i,b}^{(0)}(\widehat{x}) = F_{i,b}^{(0)}(\widehat{x}) \\
C_{i,b}^{(1)}(\widehat{x}) = F_{i,b}^{(1)}(\widehat{x}) - \left[C_{i,a}^{(0)} \otimes A_{ab}^{(1)}\right](\widehat{x}) \\
C_{i,b}^{(2)}(\widehat{x}) = F_{i,b}^{(2)}(\widehat{x}) - \left[C_{i,a}^{(0)} \otimes A_{ab}^{(2)}\right](\widehat{x}) - \left[C_{i,a}^{(1)} \otimes A_{ab}^{(1)}\right](\widehat{x})
\end{cases}$$

• organize into heavy-, light-quark pieces: $F = \sum_{l=1}^{N_l} F_l + F_h$

$$C_{h,g}^{(2)} = \widehat{F}_{h,g}^{(2)} - A_{hg}^{(2)} - c_{h,h}^{(1)} \otimes A_{hg}^{(1)}$$
S-ACOT- χ : massless FE, χ -rescaled

→ light-quark SFs: additional flavor non-sing. (NS) *disconnected* graphs:

CC DIS at NNLO and beyond (i)

- conceptually, organization of CC DIS calculation resembles NC
- gauge-boson coupling introduces charge/flavor-changing vertices

$$F_l \iff W\bar{q}_lq_l$$
 $F_h \iff W\bar{q}_hq_l \text{ or } W\bar{q}_lq_h$

- \circ HQ contributions begin only at NNLO for F_l
- \circ FE and FC diagrams involving HQ start from LO for F_h

• S-ACOT-χ patterns of subtractions, HQ mass dependence in CC NLO Wilson coeffs.:

$$\begin{cases} C_{l,l}^{(1)} = c_{l,l}^{(1)}(z), \ C_{l,g}^{(1)} = c_{l,g}^{(1)}(z), \ C_{h,h}^{(1)} = c_{l,l}^{(1)}(\chi) \\ C_{h,l}^{(1)} = H_l^{(1)}(z) - C_{h,l}^{(0)} \otimes A_{ll}^{(1)} \\ C_{h,g}^{(1)} = H_g^{(1)}(z) - C_{h,l}^{(0)} \otimes A_{lg}^{(1)} - C_{h,h}^{(0)} \otimes A_{hg}^{(1)} \end{cases}$$

 HQ contributions explicitly appear in lightquark SF at NNLO; subtracted NS coeff.:

$$C_{l,g}^{(2)} = c_{l,g}^{(2)}(z), \ C_{l,h}^{(2)} = c_{l,h}^{(2)}(\chi)$$
 $C_{l,l}^{(2)} = c_{l,l}^{(2)}(z) + \widetilde{C}_{l,l}^{(NS,2)}(z)$

careful ordering of diagrams by flavor structure, topology is crucial

CC DIS at NNLO and beyond (ii)

→ representative CC NNLO subtraction diagrams – identifiable with coeff. expressions

$$C_{h,h}^{(2)} = c_{h,h}^{(2)}(\chi)$$

$$C_{h,l}^{(2)} = H_l^{(2)}(z) - \Delta C_{h,l}^{(2)}$$

$$C_{h,g}^{(2)} = H_g^{(2)}(z) - \Delta C_{h,g}^{(2)}$$

constructed from 2-loop operator matrix elements

- finally, ZM N³LO Wilson coeffs. available!
 - \rightarrow evaluate approximate N³LO (*i.e.*, N³LO')

• S-ACOT-χ patterns of subtractions, HQ mass dependence in CC NLO Wilson coeffs.:

$$\begin{cases} C_{l,l}^{(1)} = c_{l,l}^{(1)}(z), \ C_{l,g}^{(1)} = c_{l,g}^{(1)}(z), \ C_{h,h}^{(1)} = c_{l,l}^{(1)}(\chi) \\ C_{h,l}^{(1)} = H_l^{(1)}(z) - C_{h,l}^{(0)} \otimes A_{ll}^{(1)} \\ C_{h,g}^{(1)} = H_g^{(1)}(z) - C_{h,l}^{(0)} \otimes A_{lg}^{(1)} - C_{h,h}^{(0)} \otimes A_{hg}^{(1)} \end{cases}$$

 HQ contributions explicitly appear in lightquark SF at NNLO; subtracted NS coeff.:

$$C_{l,g}^{(2)} = c_{l,g}^{(2)}(z), \ C_{l,h}^{(2)} = c_{l,h}^{(2)}(\chi)$$
 $C_{l,l}^{(2)} = c_{l,l}^{(2)}(z) + \widetilde{C}_{l,l}^{(NS,2)}(z)$

careful ordering of diagrams by flavor structure, topology is crucial

illustration for arbitrary DIS cross sections

- before expt.-specific predictions, compute generic DIS reduced cross section(s)
 - → compare calculations of highest available order: FFN vs. ZM vs. GM schemes

implications for CC DIS at EIC

- EIC will undertake various precision QCD measurements; EIC Yellow Report arXiv: 2103.05419
 - \rightarrow Inclusive Reactions Study (YR7.1.1): CC including positron beam access to d, s PDFs

- consider high-energy EIC collisions
 - → reconstruction challenges: CC events restricted to high Q^2

- strong perturbative convergence
 - → for N³LO′, scale variations generally contained to $\lesssim 0.5 - 1\%$
- significantly smaller than PDFdriven uncertainties, which can be as large as $\approx 2\%$

vital ingredient in EIC PDF program

precision QCD will also be necessary for vA

- forthcoming neutrino-nuclear experiments cover wide range of energies, E_{ν}
- even at DUNE, events coming from DIS represent $\gtrsim 40\%$

(important dependence on SF extrapolations, correlations in tunes with low-energy model parameters)

- → small DIS cross section variations influence DUNE sensitivity
- → at higher energies, significant impact on sensitivity of forward-physics program at FASERv (~100s GeV); neutrino telescopes (>TeV)

precision QCD will also be necessary for vA

- v cross sections generally diminished by LO \rightarrow (N)NNLO, by 6% for most E_{ν}
- as before, NNLO and N³LO′ corrections greatly reduce scale variations

 $E_{\nu} > 100 \, \text{GeV}$: negligible $\sim 1-3\%$ elsewhere

- in contrast, PDF uncertainties are ~1-2%
 - → strong pQCD theory for FASERv program

- future analyses will witness an interplay between pQCD and nuclear effects
 - → assessed nuclear correction using nCTEQ15: $\sim 0.5\%$ effect

conclusions: next steps, PDF implications

- have extended general-mass HQ scheme to CC DIS at NNLO; approximate N³LO
 - → incorporates full HQ threshold dependence; interpolation between FFN, ZM approaches
 - → dramatic reductions to dependence on perturbative QCD scale choices
 - \rightarrow consistency across broad ranges of $x, Q^2; E_{\nu}$
- perturbative uncertainties at EIC reduced to sub-percent level for target kinematics
 - → substantially boosts precision of inclusive measurements program; PDF sensitivity
- (N)NNLO accuracy reduces vDIS scale uncertainties to ~1-3%; less at high energies
 - → critical to achieving precision objectives in vA programs at DUNE
- interfaces with PDF global analyses (and perhaps generators) will be valuable
 - → higher pQCD accuracy suggests need for parallel enhancements in, *e.g.*, nuclear modeling, EW corrections, few-GeV nonperturbative theory