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pQCD at NNLO — next-generation PDF extractions

= theory accuracy now/approaching (N)NNLO in a_for typical processes

— NLO EW corrections, especially for LHC data was. k. xie

see plenary, J. Gao; WG, P. Nadolsky

CT18: PRD103 (2021) 1, 014013
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= fit a wide assortment of data from various underlying processes; scales

— CC DIS (e.g., HERA) important complement in CT; needs NNLO treatment



CC DIS: motivation

A. Schukraft, G. Zeller

= charged-current DIS: central component in several
next-generation QCD expt. programs
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— VA, forward physics: DUNE, FASERv 2 , ;:

— precision QCD: EIC, LHeC é 0.6F

% 0.4F
example: DUNE target sensitivity to dcp — control over o 0% A
CC DIS for E, ~few GeV TS 1 o 107
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= W-exchange processes probe unique combinations

- NuTeV ptp~ v- ion, CT18 NNL
of in-nucleon flavor currents; e.g., nucleon s(z, Q) wleV p ™ v-production, CT18 NNLO
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Phys. Rev. D103 (2021) 7, 074023 [arXiv: 2006.12520]
Arratia, Furletova, TIH, Olness, Sekula
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= CC DIS data cover wide range

in Q; higher pQCD accuracy

needed for perturbative
stability, PDF extractions
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evolution schemes as general problem in QCD

= higher order(s) in pQCD: improved accuracy in Wilson coeff., control over scale dependence

= at given fixed order, nontrivial relationship with chosen heavy-quark (HQ) scheme

3-flavor O (a.2) i<} 4-flavor O (o) NLO
a2 In2()
Fy(x,Q) A F(x,Q)
NLO 0099% MO
Qz Q2

— fixed flavor-number (FFN): Q) 2 Mq; flavor-creation (FC) processes with ny = 3

— zero-mass (ZM) variable flavor-number: @Q>> Mg; flavor-excitation (FE)
processes with ny = 4

= 2 paradigms adapted to different regimes w.r.t. HQ mass scale; 4 interpolation scheme?



5

general-mass schemes: S-ACOT-y

= variable flavor-number scheme to interpolate between ZM and FFN regimes: ACOT
Aivazis, Collins, Olness, Tung; PRDS0 (1994) 3085-3118

— systematic approach to incorporating HQ mass dependence
= introduce subtraction term(s) to eliminate double counting between FC/FE contributions:

L ka

(FC) (FE) (SUB)

Q 2 Mo = (SUB) = (FE) such that ny = 3 FC dominates
QQ > Mg = (SUB) = (FC) such that ny =4 FE dominates

x(x,Q, Mg) —x<1—i——ZMQ )

o “simplified” ACOT (S-ACOT): neglect full HQ mass dependence in FE graphs
> S-ACOT-y: smooth HQ thresholds, include approx. HQ mass dependence: C;(z) — C;(x)

= formulation necessitates careful tracking of diagrams to organize calculation correctly



template calculation: NC DIS at NNLO

Guzzi, Nadolsky, Lai, Yuan Phys. Rev. D86, 053005 (2012) [arXiv: 1108.5112]

at structure-function level, factorization allows separation of coeff. functions, PDFs:
Nf s

Z Z za®q)a/p (ZE Q) (F:FZ,L)

compute S-ACOT-y coeff. functions: expand in o, each term in auxiliary partonic struct. func.:

structure functions

Nj o
Fi,b(aj\a Q) — Z [Ci,a X q)a/b} ('//13\7 Q)
=0 — matching terms order-by-order, 0 F<1>
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= organize into heavy-, light-quark pieces: F = Z Fy + Fy, ﬁ yﬁﬁ
=1
Off = B - 4~k o 41

L‘ S-ACOT-y: massless FE, x-rescaled

— light-quark SFs: additional flavor non-sing. (NS) disconnected graphs: Z;h ; ;



CC DIS at NNLO and beyond (i)

= conceptually, organization of CC DIS calculation resembles NC

W+ FC
= gauge-boson coupling introduces charge/flavor-changing vertices :
B r0o 0000
F, — Waqaq SRR R
Fn <= Wana or Waiqn °
w- FE
— appearance of heavy flavor occurs at different orders w.r.t. NC s
> HQ contributions begin only at NNLO for F; (0005007
> FE and FC diagrams involving HQ start from LO for F},
Cc

» S-ACOT-y patterns of subtractions, HQ mass dependence in CC NLO Wilson coefls.:

Oy = e (2), Oy = e (2); Cin = ef) () o . -
(1) ) 0) (1) = HQ contributions explicitly appear in light-
L Gl =H () -G © Ay quark SF at NNLO; subtracted NS coeff.:
C(l) _ H(l) p C(O) ®A(1) C(O) ®A(1) (2) (2) (2)
L h,g g () h,l h,h O _Clg( ) Olh_clh(X)

2 2 NSZ
0§R=c§2< )+ C(2)

- careful ordering of diagrams by flavor structure, topology is crucial



CC DIS at NNLO and beyond (ii)

— representative CC NNLO subtraction diagrams — identifiable with coeff. expressions

N S

T CELEELR ) &
C }(fzb C%Z;L (x) , constructed from 2-loop operator matrix elements
@) () - @
Chy = H " (2) — ACy = finally, ZM N°LO Wilson coefs. available!
(2) _ 77(2 (2)
Chg=H g( /() - AC, — evaluate approximate N°LO (i.e., N°LO")

(D= G, 6 =6, 0N = D6 o - -
D (D) ) (1) = HQ contributions explicitly appear in light-
L Gl =H () -0 © Ay quark SF at NNLO; subtracted NS coefT.:
(1) _ gy (1) (0) (1) (0) (1)

05, —cﬁ( >+0<NS 2>< )

. careful ordering of diagrams by flavor structure, topology is crucial



illustration for arbitrary DIS cross sections

= before expt.-specific predictions, compute generic DIS reduced cross section(s)
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— compare calculations of highest available order: FFN vs. ZM vs. GM schemes
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e p CC DIS, /s = 200 GeV, = = 0.02
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NLO: ZM vs FFN, < 6%
NNLO: ZM vs FEN, < 3%

GM interpolation between
FEN at low Q, ZM at high O

GM N3LO': GM NNLO
+ ZM N3LO
[INNLO PDFs]

scale variations: shift ur, ur
by x2

— improved convergence with order!

Q® (Gev?) ——» (illustrate virtuality dependence)



implications for CC DIS at EIC

= EIC will undertake various precision QCD measurements; EIC Yellow Report arXiv: 2103.05419

— Inclusive Reactions Study (YR7.1.1): CC - including positron beam — access to d, s PDFs

e p CC DIS, /s = 141 GeV, Q% = 100 GeV?
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= consider high-energy EIC collisions
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— reconstruction challenges:
CC events restricted to high O°
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vital ingredient in EIC PDF program



precision QCD will also be necessary for vA

= forthcoming neutrino-nuclear experiments cover wide range of energies, [,

= even at DUNE, events coming from DIS represent = 40%

PDF unc.
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(important dependence on SF extrapolations, correlations in tunes with low-energy model parameters)

0.6

vN DIS cross section for isoscalar target
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— small DIS cross section variations
influence DUNE sensitivity

— at higher energies, significant
impact on sensitivity of forward-
physics program at FASERv (~100s
GeV); neutrino telescopes (>TeV)

A. Schukraft, G. Zeller
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precision QCD will also be necessary for vA

= v cross sections generally diminished by LO — (N)NNLO, by 6% for most £/,

= as before, NNLO and N°LO’ corrections greatly reduce scale variations

vN DIS cross section for isoscalar target
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{EV > 100 GeV: negligible

~ 1—3% elsewhere

= 1n contrast, PDF uncertainties
are ~1-2%

— strong pQCD theory for
FASERYvV program

= future analyses will witness an
interplay between pQCD and
nuclear effects

— assessed nuclear correction
using nCTEQ15: ~ 0.5% effect
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conclusions: next steps, PDF implications

= have extended general-mass HQ scheme to CC DIS at NNLO; approximate N°LO

— incorporates full HQ threshold dependence; interpolation between FFN, ZM approaches
— dramatic reductions to dependence on perturbative QCD scale choices

— consistency across broad ranges of z, Q*: E,,

= perturbative uncertainties at EIC reduced to sub-percent level for target kinematics

— substantially boosts precision of inclusive measurements program; PDF sensitivity

= (N)NNLO accuracy reduces vDIS scale uncertainties to ~1-3%; less at high energies

— critical to achieving precision objectives in vA programs at DUNE

= interfaces with PDF global analyses (and perhaps generators) will be valuable

— higher pQCD accuracy suggests need for parallel enhancements in,
e.g., nuclear modeling, EW corrections, few-GeV nonperturbative theory
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