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Motivation: Measuring mW at the LHC any hadron collider

Want to measure mW , but too much information about the neutrino is lost:

⇒ Need precise theory predictions for dσ/dpZT and dσ/dpWT

to model the pWT spectrum using precisely measured pZT as input

mATLAS
W = 80370± 7stat.

± 11exp. syst.

± 14theory MeV

= 80370± 19 MeV

[ATLAS, 1701.07240]

mLHCb
W = 80354± 23stat.

± 10exp. syst.

± 17theory

± 9PDF MeV

= 80354± 32 MeV

[LHCb, 2109.01113]
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Motivation: Measuring mW at the LHC any hadron collider

Want to measure mW , but too much information about the neutrino is lost:

⇒ Need precise theory predictions for dσ/dpZT and dσ/dpWT

to model the pWT spectrum using precisely measured pZT as input

Challenges Opportunities for theory
• Need sub-percent precision on dσ/dpZT and dσ/dpWT

I Leave no stone unturned: QCD three-loop corrections, QED radiative corrections,
quark mass e�ects, parametric and nonperturbative uncertainties

• Resum singular terms & large logarithms α
n
s

qT

(
ln
qT
Q

)2n−1

to all orders in αs
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Perturbative ingredients: Factorized singular cross section at N3LL′

dσ

dqT
=

dσres
fact

dqT
+
[dσFO

full

dqT
− dσFO

fact

dqT

]
≡ dσres

fact

dqT
+

dσnons
fact

dqT

dσfact

dQ dY dqT
=
∑
q

Hqq̄(Q,µ) qT

∫ ∞
0

dbT bT J0(qT bT )

× fTMD
q (xa, bT , µ, ζ) f

TMD
q̄ (xb, bT , µ, ζ) + (q ↔ q̄)

Pa Pb

`+

`−
soft

soft

nn̄
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Perturbative ingredients: Factorized singular cross section at N3LL′
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fact
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=
∑
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Hqq̄(Q,µ) qT

∫ ∞
0

dbT bT J0(qT bT )

× fTMD
q (xa, bT , µ, ζ) f

TMD
q̄ (xb, bT , µ, ζ) + (q ↔ q̄)

Implemented in SCETlib C++ numerical library [Ebert, JKLM, Tackmann]:

• Three-loop hard function [Baikov et al. ’09; Lee et al. ’10; Gehrmann et al. ’10, ’20; Czakon et al. ’21]

• Three-loop matching of TMD PDFs onto collinear PDFs
[Li, Zhu, ’16; Luo, Yang, Zhu, Zhu ’19; Ebert, Mistlberger, Vita ’20]

I Prediction includes complete three-loop RG boundary conditions (N3LL′)
I Integral of spectrum is N3LO-accurate
• Four-loop cusp, three-loop noncusp anomalous dimensions

[Brüser, et al. ’19; Henn et al. ’20; v. Manteu�el et al. ’20; Li, Zhu, ’16; Vladimirov ’16]

• Fiducial power correctionsO(qT /Q) resummed through exact acceptance
[Resummation & use in subtraction: Ebert, JKLM, Stewart, Tackmann ’20]
[See talk by Alessandro Guida on Tuesday for impact on PDF fits!] 3/16
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• Fiducial power correctionsO(qT /Q) resummed through exact acceptance
[Resummation & use in subtraction: Ebert, JKLM, Stewart, Tackmann ’20]
[See talk by Alessandro Guida on Tuesday for impact on PDF fits!] 5/16



Perturbative ingredients: Fixed-order matching
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full

dqT
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sing

dqT
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1

qT
O
( q2

T

Q2

)

• In-house analytic implementation of all helicity structure functions atO(αs)

• Fiducial Z+jet MC data atO(α2
s) from MCFM

[Campbell, Ellis, et al. ’99, ’15]

• Very recently: Precise fiducial Z+jet MC data atO(α3
s) from NNLOjet

[Chen et al., 2203.01565 – many thanks to the NNLOjet collaboration for providing the raw data.]
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Results: Central prediction and perturbative convergence for Z → `+`−

• Central results use MSHT20nnlo with αs(mZ) = 0.118, nf = 5

• NNLO (= three-loop!) PDF evolution formally su�cient at N3LL′:
• DGLAP kernels are a noncusp anomalous dimension
• Scale dependence formally cancels within three-loop TMD PDF function
• Separate question whether PDFs should have been extracted using three-loop σ̂ij . . .
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• Excellent perturbative convergence towards three-loop result
• Higher orders are covered by uncertainty estimate at lower orders

[See backup for how they are estimated] 7/16



Results: Predictions for W± → `ν
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Results: Estimate of nonperturbative contributions
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• Sources of nonperturbative corrections at small qT :
• Collins-Soper kernel (drives TMD evolution)
• Intrinsic parton transverse momentum (TMD boundary conditions)

• Vary CS kernel model to cover spread of recent lattice results
[See backup for details; see also talk by P. Shanahan on Monday!]

• Taken at face value, the lowest bins seem to prefer weaker NP e�ects
• Overshoot data at qT = 20− 30 GeV, way outside NP e�ect strength 9/16



Results: Impact of PDFs on normalized Z spectrum

0 5 10 15 20 30 40 50 60

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

• Resummed 3-loop cross section is analytic, hold small α2,3
s nonsingular fixed

I Whole figure with complete PDF uncertainties at few 100 CPUh!

• PDF uncertainty largely cancels in normalized spectrum

• Cannot explain overshoot at qT = 20− 30 GeV 10/16



Cumulative unnormalized cross sections for N3LO PDF fits
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• Cumulative cross section
distinguishes recent PDF sets
• Nonperturbative e�ects ≤ 0.1%

past qmax
T ∼ 20 GeV

I Great target for N3LO PDF fits
(limiting K-factors to σnons!)
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Results: Impact of αs on normalized Z spectrum

0 5 10 15 20 30 40 50 60

-4

-2

0

2

4

6

8

10

• Parametric uncertainty due to αs(mZ) on par with perturbative uncertainty
• Overshoot at qT = 20− 30 GeV is naturally explained by lower αs(mZ)
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This is not unprecedented . . .

• Lower values of αs(mZ) have previously been reported
in fits to e+e− event shapes (thrust and C parameter)
DISCLAIMER: This was not an actual fit to {αs(mZ),Ω, ω

(2)
ζ }.

• Like pZ/WT , these are driven by all-order resummation . . . 13/16



. . . but many caveats remain

Systematics at the theory frontier:

• QED resummation e�ects for on-shell Z well understood
[Bacchetta, Echevarria ’18; Cieri, Ferrera, Sborlini ’18; Billis, Tackmann, Talbert ’19]

• Expected to be∼ 1%, but would bring the tail up more

[Cieri, Ferrera, Sborlini 1805.11948] 14/16



. . . but many caveats remain

Systematics at the theory frontier:

• QED resummation e�ects for on-shell Z well understood
[Bacchetta, Echevarria ’18; Cieri, Ferrera, Sborlini ’18; Billis, Tackmann, Talbert ’19]

• Expected to be∼ 1%, but would bring the tail up more
• In progress: Interface resummation with QED/weak corrections to full process

with realistic lepton definitions (beyond mixed ααs)
• Subleading power resummation & factorization for nonsingular cross section

[Progress towards doing this at least forO(qT /Q) azimuthal correlations]
[Moos, Scimemi, Rodini, Vladimirov ’21-’22; Ebert, Gao, Stewart ’21→ see talk by A. Vladimirov!]

• Full resummed treatment of mass e�ects/flavor thresholds

• Expect impact on spectrum (and cumulative cross section)
to be suppressed by #m2

b/q
2
T ?
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Summary

The Drell-Yan qT Spectrum at N3LL′ and Its Uncertainty:

• Presented third-order predictions for Z and W± qT spectra at the LHC

I Residual perturbative uncertainty at percent level in the peak

• Three-loop resummed SCETlib predictions are analytic & fast also with cuts

I Assessing PDF and αs uncertainties possible directly at three loops
I Cumulative cross sections up to qmax

T ≈ 40 GeV

extremely promising targets for N3LO PDF fits (or reweighting)

• Even small changes αs(mZ)± 0.001 strongly impact the peak shape

I E�ect for qT ≤ 20 GeV as important for TMD fits as collinear PDF uncertainty

• Intriguing hints that the data may prefer a lower value of αs(mZ) – stay tuned

Thank you for your attention!
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Breakdown of perturbative uncertainties
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∆pert. = ∆FO ⊕∆match ⊕∆res ⊕∆DGLAP ⊕∆recoil

• Fixed-order uncertainty, keeps resummed logarithms unchanged
• Estimated by standard variations of overall µR = µFO

• All scales (except µf ) are chosen∝ µFO, so e.g. µH/µS unchanged
• Frozen out at bT . 1/ΛQCD by µ∗X prescription⇒ disentangled from NP 1/14



Breakdown of perturbative uncertainties
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∆pert. = ∆FO ⊕∆match ⊕∆res ⊕∆DGLAP ⊕∆recoil

• Uncertainty from matching scheme between resummed peak and fixed-order tail
• Estimated by varying the x = qT /Q transition points in hybrid profile as

{x1, x2, x3} = {0.3, 0.6, 0.9}±{0.1, 0.15, 0.2}

• Checked that inclusive integrated cross section is recovered within ∆match 2/14



Breakdown of perturbative uncertainties
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∆pert. = ∆FO ⊕∆match ⊕∆res ⊕∆DGLAP ⊕∆recoil

• Probes higher-order resummed logarithms
• Estimated by envelope of 36 di�erent combinations

of independently varying {µB, µS, νB, . . . } in σ(0) = HB ⊗B ⊗ S
• Also frozen out at bT . 1/ΛQCD by µ∗X prescription⇒ disentangled from NP
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Breakdown of perturbative uncertainties
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∆pert. = ∆FO ⊕∆match ⊕∆res ⊕∆DGLAP ⊕∆recoil

• Estimate of missing higher orders (four loops) in DGLAP running
• Estimated both in peak and tail by joint variations of µf(bT , qT , Q) and µF (Q)

• Oscillatory due to bT -space features at uncancelled mb threshold
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Breakdown of perturbative uncertainties
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∆pert. = ∆FO ⊕∆match ⊕∆res ⊕∆DGLAP ⊕∆recoil

• RPI-I transformation of nµa , nµb in Wµν
LP ∼ g

µν
⊥ (na, nb)

• Induces O(q2
T /Q

2) change in spectrum due to fiducial cuts on Lµν
[Ebert, JKLM, Stewart, Tackmann ’20]

• Equivalent to changing “recoil prescription”/choice of Z rest frame byO(qT /Q)
5/14



Nonperturbative model for the Collins-Soper kernel

1

2
γqν,NP(bT ) = γqζNP(bT ) = ciζ tanh

(ω2
ζ,i

|cζ|
b2
T

)
= sgn(ciν)ω2

ζ,ib
2
T +O(b4

T )
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• Vary either ωζ (“short distance”) or cζ (“long distance”) to cover lattice results
[Collection of lattice data from Shanahan, Wagman, Zhao, 2107.11930→ see talk by P. Shanahan]

• Pick central value of sgn(ciν)ω2
ζ,i(1± 2) to serve as bias correction

for known leading (NNLL) bottom quark mass e�ect in γqζ :

∆γqζ (bT ,mb, µ) =
α2
s

π2
CFTF (mbbT )2

(
ln

b2Tm
2
b

4e−2γE
− 1

)
≈ −(0.25 GeV)2b2

T

NOTE Compatible with [Scimemi, Vladimirov ’19; Bacchetta et al. ’19], but aim for a-priori prediction 6/14



Nonperturbative model for the TMD PDF = Bi(x, bT , µ, ν/ω)
√
S(bT , µ, ν)

• Most general structure of leading NP correction b2
TΛ

(2)
i (x) is complicated

• However, can show that for a given process and fiducial volume,
only a single average coe�cient Λ remains after the integral
over hard phase space ΦB :
[Ebert, JKLM, Stewart, Sun ’22]

σ̃(bT ) = σ̃(0)(bT )
{

1 + b2T

(
2Λ

(2)
+ γ

(2)
ζ,qLQ2

)}
+O

[
(ΛQCDbT )4

]
Λ

(2)
=

∫
dΦB A(ΦB)

∑
i,j σ

B
ij(Q) f

(0)
i (xa, µ0) f

(0)
j (xb, µ0)

[
Λ

(2)
i (xa) + Λ

(2)
j (xb)

]
2
∫

dΦB A(ΦB)
∑
i,j σ

B
ij(Q) f

(0)
i (xa, µ0) f

(0)
j (xb, µ0)

I Idea: Promote Λ
(2) to a single-parameter Gaussian model

fNP
i (x, bT ) = exp(−Ω2b2

T ) with Λ
(2)

= −Ω2

• Take central Ω = 0.5 GeV and vary it as Ω = {0, 0.7}GeV

I For qT � ΛQCD, this captures the most general form
of the leading NP correction to the rapidity-integrated qT spectrum

7/14



RG evolution, profile scales, and Landau pole prescription

• Use exact analytic solutions of virtuality and rapidity RG equation, combined with
fast numerically exact solution of β function [Ebert ’21]

I Eliminates source of truncation error at fraction of cost of full Runge-Kutta

• Choose RG boundary scales as hybrid profile scales µX(bT , qT , Q):
[Lustermans, JKLM, Tackmann, Waalewijn ’19]

µX(bT , qT � Q) =
b0

bT
but µX(bT , qT → Q)→ µFO = Q

• Apply “local” b∗ prescription starting atO(b4
T ) to virtuality scales only:

µX → µ∗X =
[(
µmin
X

)4
+
( b0

bT

)4]1/4
=
b0

bT

{
1 +O

[
(µmin
i bT )4

]}
I Avoids contaminating nonperturbative corrections at quadratic order

[Conflict with bT -space renormalon structure: Scimemi, Vladimirov ’18]
[Translation back to momentum space: Ebert, JKLM, Stewart, Sun ’22]

• For PDFs inside beam functions, use µmin
f = min{Q0,mc}
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O(α3
s) nonsingular interpolations
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Comparison with RadISH (using identical NNLOjet fixed-order matching)
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[Chen et al., 2203.01565]
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• Can recover the data for qT ≤ 4 GeV
with NP model≈ o�

• To recover the RadISH result at≤ 4 GeV,
would need large positive γ(2)

ζ or Λ̄(2)

• In either case, cannot recover≥ 20 GeV
due to Λ2

QCD/q
2
T scaling imposed by TMD

factorization & OPE
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Comparison with RadISH (using identical NNLOjet fixed-order matching)

• Common ingredient: Sudakov evolution kernels from µ0 ∼ Q to µ ∼ 1/bT , qT

e.g.: KΓ(µ0, µ) =

∫ µ

µ0

dµ′

µ′
Γ[αs(µ

′)] ln
µ′

µ0

• Implementation of Sudakov kernels in SCETlib is exactly equal
to numerical solution of β function + numerical µ′ integral
I β(αs) and Γ(αs) truncated after α4

s ,
no additional approximations or assumptions

I Exact RGE closure U(µ0, µ)U(µ, µ0) = 1

I Exact path independence in (µ, ν) or (µ, ζ) plane

• . . . but much faster, thanks to closed-form results in [Ebert, 2110.11360]
in terms of a single polynomial root-finding problem
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Comparison with RadISH (using identical NNLOjet fixed-order matching)

• Common ingredient: Sudakov evolution kernels from µ0 ∼ Q to µ ∼ 1/bT , qT

e.g.: KΓ(µ0, µ) =

∫ µ

µ0

dµ′

µ′
Γ[αs(µ

′)] ln
µ′

µ0

• Common to expand KΓ(µ0, µ) in terms of αs(µ0) throughout instead
⇒ simpler analytic solution with g(1) a function of anO(1) argument:

Kexp.
Γ (µ0, µ) = Lg(1)(αs(µ0)L

)
+ NLL , L = ln

µ0

µ

• However, reexpanding in terms of αs(µR), µR 6= µ0 (read: µ0 = resummation scale)
leads to large truncation errors [Billis, Tackmann, Talbert, 1907.02971]
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ATLAS normalized spectrum (Born leptons)
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CMS normalized spectrum (dressed leptons)
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