Nuclear Modification of Bound Nucleons and Global QCD Analyses

S. Alekhin

University of Hamburg, Germany

S. Kulagin

INR Moscow

R. Petti

University of South Carolina, Columbia SC, USA

DIS 2022 May 3rd, 2022, Santiago de Compostela, Spain

- ♦ Precision studies of high-energy processes with nuclei require an understanding of nuclear effects at the parton level, which were observed to survive at $Q \gg 1$ GeV/c.
- ◆ The study of nuclear corrections in the deuteron provide insights into the mechanisms responsible for modifications of PDFs in the nuclear environment:
 - Deuteron is a weakly bound system of two nucleons whose dynamics is better understood than the dynamics of many-particle nuclei;
 - Effects of the momentum distribution, nuclear binding and off-shell modification of bound nucleons driven by the deuteron wave function, which is directly related to the underlying N-N interaction.
 - Discrepancies among results reported by different groups.
 - ⇒ Compare with results obtained from heavier nuclear targets
- ◆ Deuterium commonly used as an "effective" neutron target in global QCD analyses:
 - Nuclear corrections in deuterium are non negligible and strongly depend on x and Q^2 at large x;
 - Nuclear effects in deuterium can introduce significant uncertainties on d/u ratio at large x.
 - \implies Quantify (reduce) uncertainties on d/u ratio at large x

Microscopic Kulagin-Petti (KP) model [NPA 765 (2006) 126, PRC 90 (2014) 045204]. At large x nuclear DIS dominated by incoherent scattering off bound nucleons:

◆ FERMI MOTION AND BINDING effects in nuclear PDFs from the convolution of nuclear spectral function with (bound) nucleon PDFs:

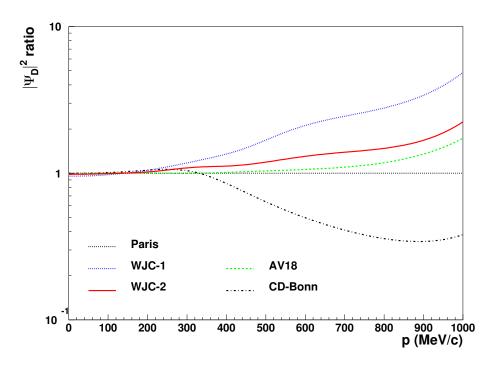
$$F_2^A = \sum_{i=p,n} \int d\varepsilon d^3 \mathbf{p} \, \mathcal{P}_i(\varepsilon, \mathbf{p}) K_2 F_2^i(x', Q^2, p^2)$$

where $x' = Q^2/(2p \cdot q)$ and $p = (M + \varepsilon, \mathbf{p})$ and K_2 kinematic factor $(K_2 \approx 1 + p_z/M \text{ for } Q \gg M)$.

♦ Since bound nucleons are OFF-MASS-SHELL there appears dependence on the nucleon virtuality $p^2 = (M+\varepsilon)^2 - \mathbf{p}^2$ and expanding PDFs in the small $(p^2-M^2)/M^2$:

$$F_2^i(x, Q^2, p^2) \approx F_2^i(x, Q^2, p^2 = M^2) \left(1 + \delta f(x)(p^2 - M^2)/M^2\right).$$

where we introduced a universal function for the NUCLEON: $\delta f(x)$


⇒ Modification of bound nucleon partonic structure in the nuclear environment

lacktriangle Two-body nucleus whose spectral function determined by the wave function $\Psi_D(\mathbf{p})$:

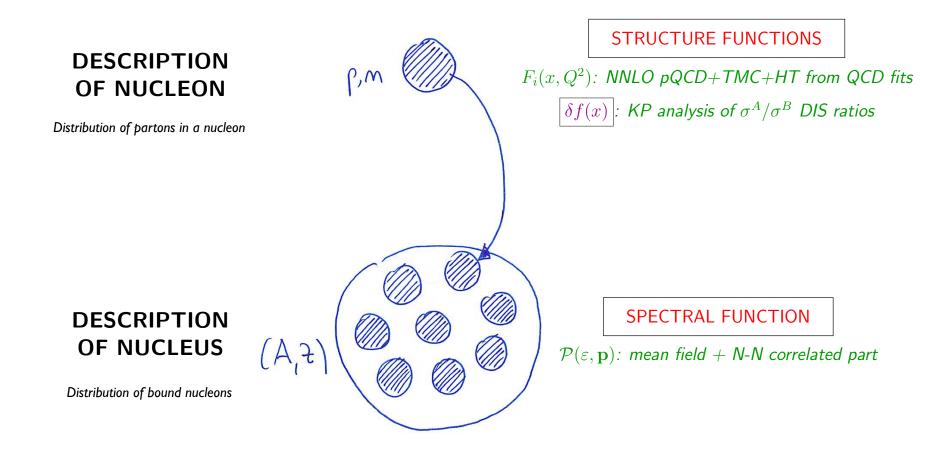
$$\mathcal{P}(\varepsilon, \mathbf{p}) = 2\pi\delta \left(\varepsilon - \varepsilon_D + \frac{\mathbf{p}^2}{2M}\right) |\Psi_D(\mathbf{p})|^2$$

where $\varepsilon_D = M_D - 2M \approx -2.2$ MeV is the binding energy.

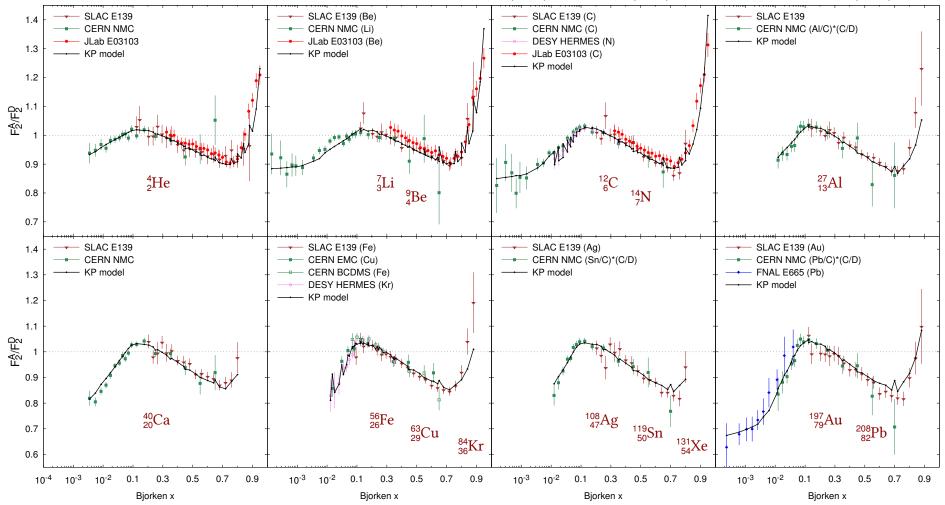
♦ The deuteron is a superposition of s- and d-wave states. Different models of $\Psi_D(\mathbf{p})$ based on the corresponding underlying N-N interaction potentials, which are constrained at low momentum (p < 300 MeV/c) by pp, pn and nn scattering data.

 $|\Psi_D(\mathbf{p})|^2$ gives deuteron momentum distribution

Different N-N potentials used

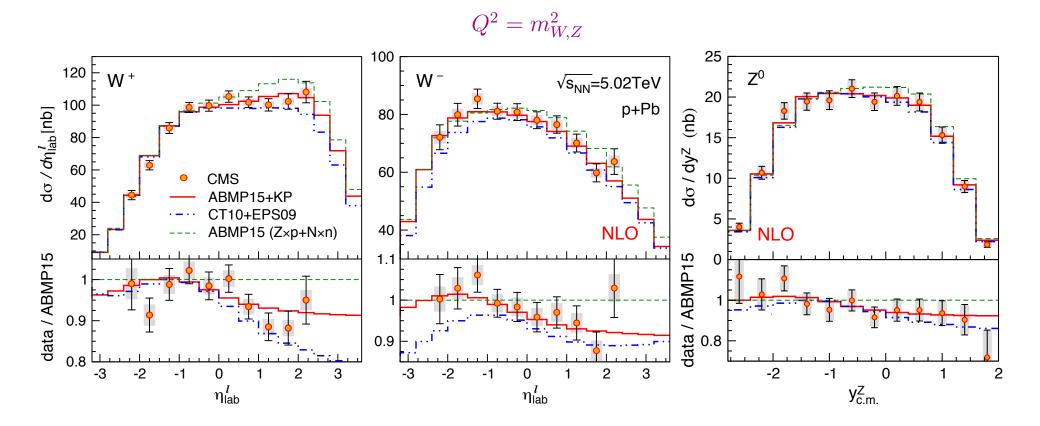

Paris: PRC 21 (1980) 861

CD-Bonn: PRC 63 (2001) 024001

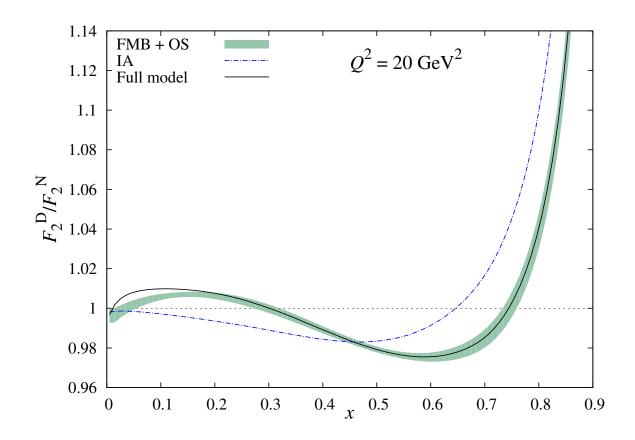

AV18: PRC 84 (2011) 034003

WJC-1,2: PRC 82 (2010) 034004

[AKP, PRD 96 (2017) 054005]



Model includes meson-exchange current (MEC) correction balancing nuclear light-cone momentum and coherent multiple scattering effects responsible for nuclear shadowing [NPA 765 (2006) 126, arXiv:hep-ph/0412425]



Microscopic KP model provides quantitative description of available data: $\chi^2/N_{\rm Data} = 466.6/586$ for DIS data with $Q^2 \geq 1$ GeV²

⇒ Evidence for off-shell modification of bound nucleons from inclusive DIS

Predictions from KP model in excellent agreement with Drell-Yan and W^\pm/Z boson production in pPb collisions up to $Q^2=m_{W,Z}^2$ (PRC 90 (2014) 045204; PRD 94 (2016) 113013)

- → The full model includes nuclear Meson Exchange Currents (MEC) and coherent nuclear interactions from Nuclear Shadowing (NS)

 (NPA 765 (2006) 126; PRC 82 (2010) 054614, PRC 90 (2014) 045204)
 - \implies This study focuses on the kinematic region x>0.1 dominated by FMB+OS

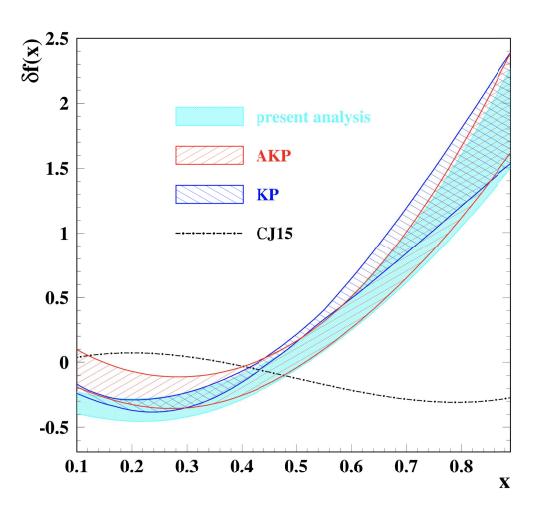
♦ Structure functions are parameterized in the NNLO QCD approximation, supplemented by two (isoscalar) High Twist (HT) corrections to F_2 and F_T :

$$F_{2,T}(x,Q^2) = F_{2,T}^{LT,TMC}(x,Q^2) + \frac{H_{2,T}^N(x)}{Q^2}$$

- Target mass corrections (TMC) in the Leading Twist (LT) term following Georgi-Politzer;
- Fixed flavor number scheme (FFNS) with $n_f = 3$ and $\overline{\rm MS}$ running masses for heavy quarks;
- PDFs are parameterized following ABMP16 at the initial scale $Q_0^2=9~{\rm GeV^2}$ [PRD 96 (2017) 014011];
- ullet Analysis performed in the region $Q^2>2.5~GeV^2$ and $W^2>3~GeV^2$.
- ◆ Off-shell function parameterized as generic second order polynomial to avoid modeldependent biases related to the functional form used:

$$\delta f(x) = a_0 + a_1 x + a_2 x^2$$

- Neglect nuclear effects related to meson exchange currents and shadowing since focus on the region x > 0.1 dominated by Fermi motion and binding and off-shell correction;
- Different deuteron wave functions used: Paris, CD-Bonn, AV18 (default), WJC1, WJC2.
- \implies Simultaneous extraction of $\delta f(x)$, PDFs, and HT from global QCD analysis


arXiv: 2203.07333 [hep-ph]; PRD 96 (2017) 054005

arXiv: 2203.07333 [hep-ph]

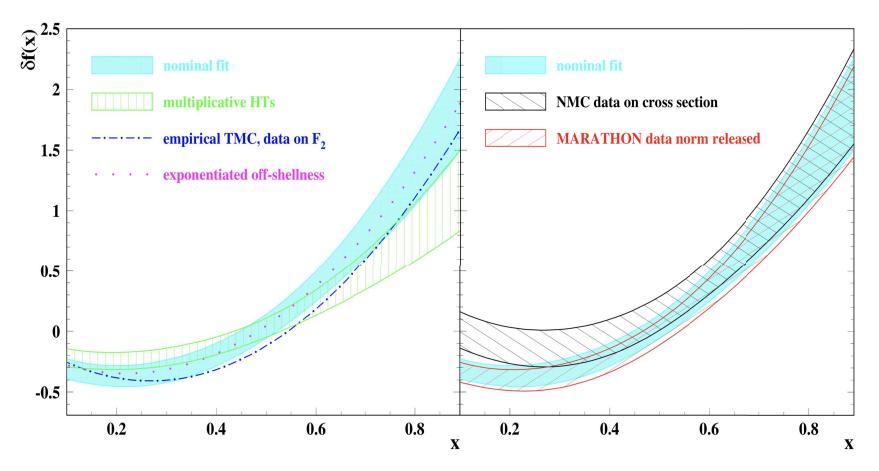
Facility	Experiment	Reference	Beam	Beam energy	Observable	Normalization	Normalization	$\frac{\chi^2}{\text{NDP}}$
				(GeV)		factor	error(s) (%)	
SLAC	E49a	[20, 21]	e	$11 \div 19.5$	$\frac{\mathrm{d}^2 \sigma^d}{\mathrm{d} E' \mathrm{d} \Omega}$	0.988(10)	2.1 ^a	25/59
"	E49b	,,	"	$4.5 \div 18$	"," diz	0.996(10)	"	187/145
"	E87	"	"	$8.7 \div 20$	"	1.000(9)	"	114/109
"	E89b	[21, 23]	"	$10.4 \div 19.5$	"	0.987(9)	"	52/72
"	E139	[21, 24]	"	$8 \div 24.5$	"	1.002(9)	"	8/17
"	E140	[21, 25]	"	$3.7 \div 19.5$	"	1	1.7	25/26
CERN	BCDMS	[26]	μ	$100 \div 280$	$\frac{\mathrm{d}^2 \sigma^d}{\mathrm{d}x \mathrm{d}Q^2}$	0.989(7)	3	273/254
"	NMC	[27]	"	$90 \div 280$	F_2^d/F_2^p	1	< 0.15	155/165
DESY	HERMES	[28]	e	27.6	$\sigma^{\overline{d}}/\sigma^{\overline{p}}$	1	1.4	21/30
JLab	E00-116	[29]	e	5.5	$\frac{\mathrm{d}^2\sigma^d}{\mathrm{d}E'\mathrm{d}\Omega}$.	0.981(10)	1.75	208/136
"	BONuS	[30]	"	4.2, 5.2	F_2^n/F_2^d	0.97(9)	$7 \div 10$	90/63
"	MARATHON	[14]	"	10.6	σ^d/σ^p	1	0.55	8/7
Total								1166/1083

List of deuterium data used in the global QCD analysis

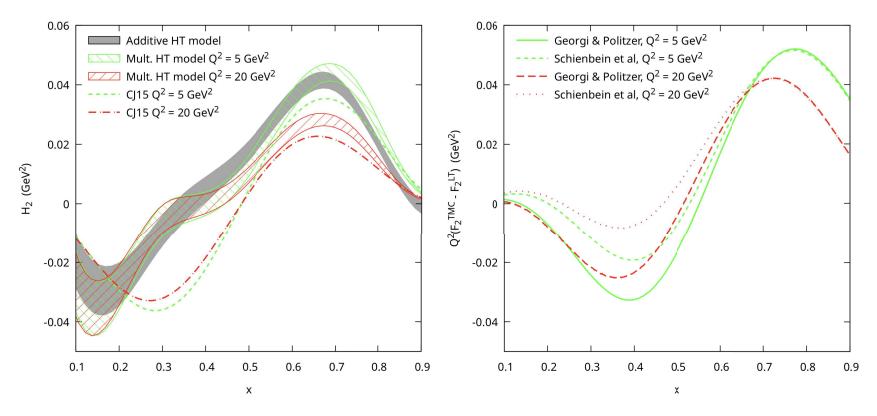
$\overline{{\sf RESULTS} \ {\sf ON} \ \delta f(x)}$

- ♦ Different Q^2 dependence allows to disentangle off-shell correction from PDFs and HT
- Results on $\delta f(x)$ agree with heavy target determination $(A \ge 4)$ and our previous extraction from D data.
- ◆ Clear disagreement with CJ15 results from global QCD fits.
- \implies Agreement with KP predictions based on δf universality

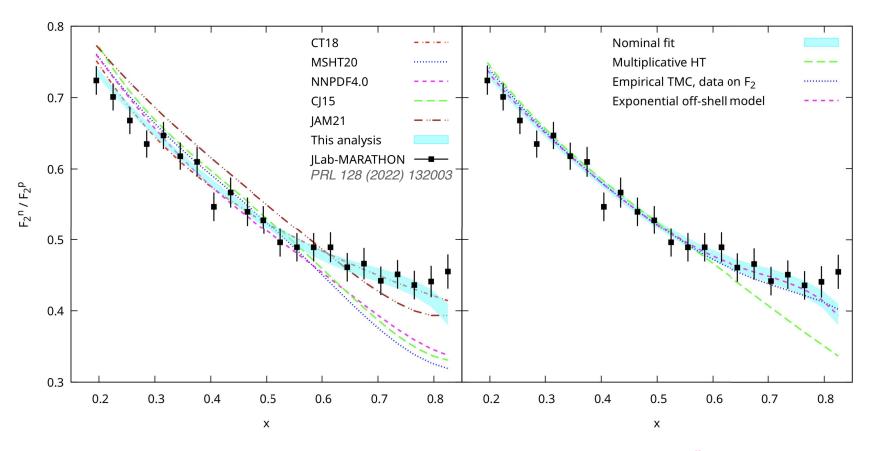
SYSTEMATIC STUDIES

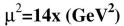

♦ Multiplicative vs. additive implementation of High Twist (HT) terms:

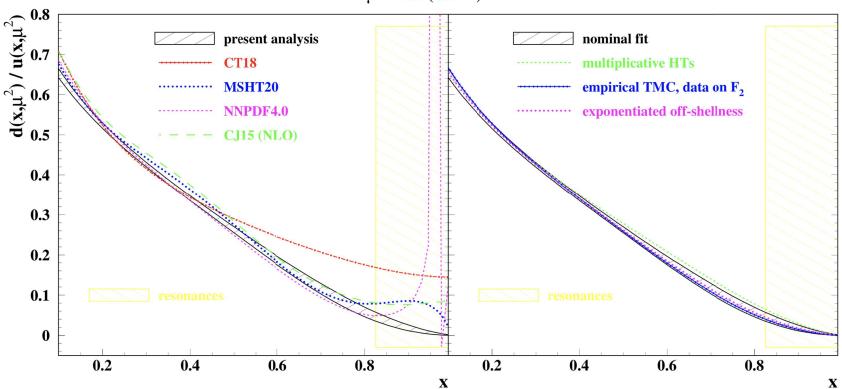
$$F_{2,T}(x,Q^2) = F_{2,T}^{\text{LT,TMC}}(x,Q^2) + \frac{H_{2,T}^N(x)}{Q^2}$$
$$F_{2,T}(x,Q^2) = F_{2,T}^{\text{LT,TMC}}(x,Q^2) + F_{2,T}^{\text{LT}}(x,Q^2) \frac{h_{2,T}^N(x)}{Q^2}$$


- ♦ Empirical approximation to TMC for F_2 used in CJ fits [J. Phys. G 35 (2008) 053101] vs. Georgi-Politzer original TMC implementation
- **♦** Exponential implementation of off-shell correction:

$$F_{2,T}^{\rm LT}(x,Q^2,p^2) = F_{2,T}^{\rm LT}(x,Q^2) \exp[\delta f(x)(p^2-M^2)/M^2)]$$

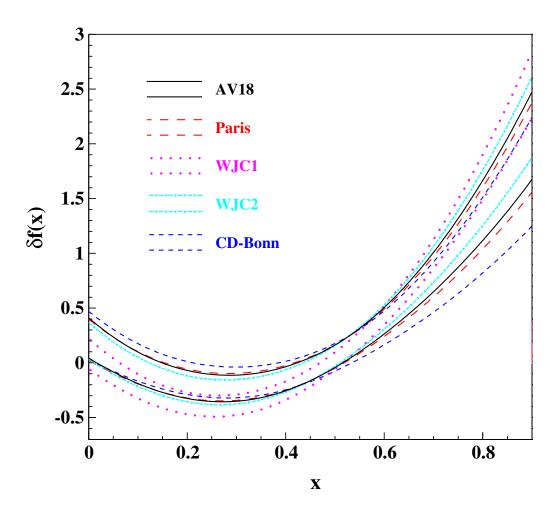

- **♦** Impact of data sets used in QCD analysis:
 - Structure function F_2^D/F_2^p vs. cross-section σ^D/σ^p data from NMC experiment;
 - Normalization on MARATHON σ^D/σ^p data [PRL 128 (2022) 132003].


- igspace Determination of δf from QCD fits stable against all systematic variations studied
- ◆ Effect of model systematics comparable with the ones from use of different data sets
 ⇒ Consistency of results with nominal fit excludes model biases



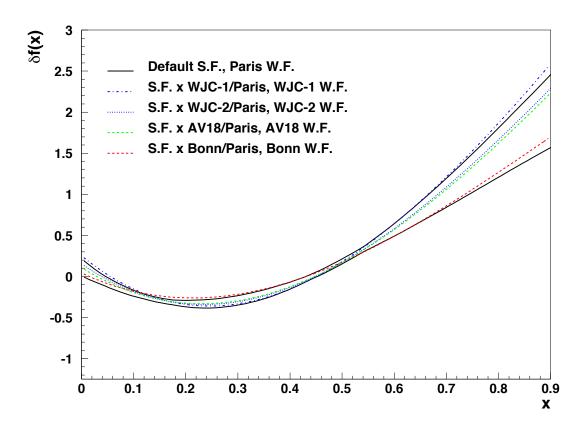
- lacktriangle Different Q^2 dependence for additive and multiplicative HT due to LT contribution
- ◆ Consistent results obtained from our fits with additive and multiplicative HT
- ◆ Significant differences with CJ15 correlated between HT (multiplicative) and TMC

- lacktriangle Our predictions in excellent agreement with MARATHON F_2^n/F_2^p (not used in fits)
- lacktriangle Sensitivity of MARATHON data to HT contribution at large x>0.6



- Similar d/u ratio from different QCD analyses at x > 0.6 with the exception of CT18
- ♦ Without additive HT terms MARATHON F_2^n/F_2^p requires substantial d/u enhancement \implies Could be checked with W^\pm production from LHCb/D0 or future $e \& \nu(\bar{\nu})$ CC

- ♦ The off-shell modification of bound nucleons leads to an important nuclear correction which can be described by a universal function $\delta f(x)$ for all nuclei
- ♦ The δf function determined from deuterium data within our global QCD analysis is consistent with the one obtained from inclusive DIS data on nuclear targets with $A \geq 4$ (Kulagin and Petti)
- lacklost The results on δf are stable against systematic studies including variations of both the structure function model and the data sets used in the QCD analysis
- Our predictions for F_2^n/F_2^p are in excellent agreement with the recent measurement by the MARATHON experiment
- Our analysis indicates that the recent measurement of F_2^n/F_2^p by the MARATHON experiment is sensitive to HT effects at x > 0.6


Backup slides

Off-shell function determined from global QCD fits with different wave function models

PRD 96 (2017) 054005

OFF-SHELL FUNCTION FROM HEAVY TARGETS $(A \ge 4)$

- $\delta f(x)$ extracted phenomenologically from nuclear DIS ratios $\mathcal{R}_2(A,B) = F_2^A/F_2^B$:
 - Electron and muon scattering from BCDMS, EMC, E139, E140, E665 and NMC
 - Wide range of targets 4 He, 7 Li, 9 Be, 12 C, 27 AI, 40 Ca, 56 Fe, 64 Cu, 108 Ag, 119 Sn, 197 Au, 207 Pb
 - Systematic uncertainties including modeling, functional form and spectral/wave function variations

 \implies Partial cancellation of systematics from spectral function in RATIOS $\mathcal{R}_2(A,B)$