DIS 2022 Conference

MSHT Approximate N³LO Parton Distribution Functions

In the pursuit of theoretical uncertainties...

Jamie McGowan, Thomas Cridge, Lucian Harland-Lang and Robert Thorne May 2022

What is a theoretical uncertainty?

And also... why do we care?

• Leading source from Missing Higher Orders in perturbation theory - many

• Leading source from **Missing Higher Orders** in perturbation theory - many different areas these occur in
$$F_2$$
.

$$F_2(x,Q^2) = \sum_{\alpha \in [H,q,g]} \sum_{i \in [q,g]} \left(C_{q,\alpha}^{GMVF,n_f+1} \otimes A_{\alpha i}(Q^2/m_h^2) \otimes f_i^{n_f}(Q^2) + C_{H,\alpha}^{GMVF,n_f+1} \otimes A_{\alpha i}(Q^2/m_h^2) \otimes f_i^{n_f}(Q^2) \right) + \alpha_s^4 P^{(3)}(x) + \dots$$
• Current knowledge is up to NNLO, with **higher orders unknown**.

- Current knowledge is up to NNLO, with higher orders unknown.
- Potentially large corrections hiding in higher orders beyond theory truncation.
- Already progress in calculating features at N³LO^[1-11].

Theoretical Uncertainties in a Global PDF Fit

$$P(T|D) \propto \exp\left(-\frac{1}{2}(T-D)^{T}H_{0}(T-D)\right) \qquad \left\{ P(T|D) \propto \exp\left(-\frac{1}{2}M^{-1}(\theta'-\overline{\theta}')^{2} - \frac{1}{2}(T'-D)^{T}H(T'-D)\right) \\ P(\theta') = \frac{1}{\sqrt{2\pi}\sigma_{\theta'}} \exp(-\theta'^{2}/2\sigma_{\theta'}^{2}) \right\}$$

- Do we need to wait for a full description of the next order to be able to use the knowledge we have?
- Can attempt to parameterise the higher order effects with a nuisance parameter defined by a prior probability distribution^[12].
- Allow the fit to move these N³LO parameters (with a **penalty attached** to ensure we stay close to the behaviour already known).
 - With these alterations, we follow the same
 practice as set out in the MSHT20 NNLO PDF fit
 the exact same global fit is done.

What do we know?

...and what don't we know?

• Zero-mass N³LO coefficient functions are known^[1].

$$\mathscr{M}[f(x)](N) = \int_{0}^{1} dx x^{N-1} f(x)$$

- Some knowledge of **leading terms** in the $x \to 0$ and large regime^[2-11].
- Some numerical constraints (Low-integer Mellin moments)[2-11].
- Intuition from lower orders/expectations from perturbation theory.
- Other parts, we know a very **limited amount** about $(A_{gg,H}^{(3)})$ and most K-factors) [8-10]

Splitting Functions up to N³LO

...approximately

- Consider we know N_m Mellin moments^[1-5].
- With N_m constraints, we employ:

$$P(x) = \sum_{i=1}^{N_m} A_i f_i(x) + f_e(x)$$

contains any known information.

- Choose a set of relevant functions f_i and solve for A_i .
- To allow control of this function, introduce a degree of freedom a. $f_e(x) \rightarrow f_e(x, a)$

- *a* interpreted as a **nuisance parameter** allowed to vary in a PDF fit.
- In our treatment a is the coefficient of the most divergent unknown small-x term.

Transition Matrix Elements up to N³LO

...approximately

- Following the **same procedure** as for the splitting functions.
- A_{Hg} is the dominant contribution to the overall form of $(H+\overline{H})$ shown across.

• A_{Hg} variation is **comparable** to previous results^[14].

N^3LO K-factors

- Parameterise the N³LO *K*-factor as a **superposition** of both NNLO and NLO K-factors.
- Allows the fit to decide on a shape (based on the shapes of preceding orders) and an overall magnitude.
- Center variational parameters \hat{a}_1 , \hat{a}_2 about 0, so K_{NNLO} is the **central** value.

$$K(y) = 1 + \alpha_s D(y) + \alpha_s^2 E(y) + \alpha_s^3 F(y) + \mathcal{O}(\alpha_s^4)$$

$$K^{\text{N}^{3}\text{LO/LO}} = K^{\text{NNLO/LO}} \left(1 + \alpha_s^3 \hat{a}_1 D + \alpha_s^3 \hat{a}_2 E \right)$$

- Correlated K-factors for each of the 5 processes: DY, Top, Jets, $Z\,p_T$ & VB Jets and Dimuon.
- \hat{a}_1 , \hat{a}_2 could be included as correlated with PDF parameters (incl. other N³LO theory parameters) or as completely decorrelated from the inclusive DIS process.
 - Ignores some small correlations through DGLAP.

MSHT N³LO PDFs

g/10

χ^2 Results

- We see a **reduction** in χ^2 from NNLO across all datasets (for 20 extra parameters).
- Reduction in tension between small and large-x.
- The reduction follows the general trend we may expect.

•
$$\chi_{LO}^2 = 11256.5$$

•
$$\chi^2_{NLO} = 5822.0$$

$$\chi^2_{N^3LO} = 4949.9$$

•
$$\chi^2_{NNLO} = 5121.9$$

0.000	$c_g^{\rm NLL} = -5.840$	0.846
0.600	$a_{qq,H}^{NS} = -62.997$	0.000
1.396		
0.005	$ ho_{gq}=-1.799$	0.989
0.303	$ ho_{gg} = 20.365$	4.298
0.000		
0.063	$DY_{NNLO} = -0.057$	0.003
0.091	$Top_{NNLO} = 0.821$	0.673
0.036	$\text{Jet}_{\text{NNLO}} = -0.775$	0.600
0.454	p_T Jets _{NNLO} = -0.106	0.011
0.461	$Dimuon_{NNLO} = 0.606$	0.367
.5 / 20	Average Penalty	0.575
	Total	4949.9 / 4363
	$\Delta \chi^2$ from NNLO	-171.2
	0.600 1.396 0.005 0.303 0.000 0.063 0.091 0.036 0.454 0.461	$a_{qq,H}^{NS} = -62.997$ $a_{qq,H}^{NS} = -62.997$ $a_{qq,H}^{NS} = -1.799$ $a_{qq,H}^{NS} = 20.365$ $a_{qq,H}^{NS} = -1.799$ $a_{qq,H}^{NS} = 20.365$ $a_{qq,H}^{NS} = -0.057$ $a_{qq,H}^{NS} = -$

χ^2 Results

- ATLAS $8~{\rm TeV}~Z~p_T^{~[15]}$ sees a huge reduction $\ln\chi^2_{NNLO}/{\rm npts} \sim 1.82~{\rm to}~\chi^2_{N^3LO}/{\rm npts} \sim 1.02.$
- This is a **similar reduction** found at NNLO when HERA datasets were not included^[17].
- In the N³LO fit, we also see a reduction in the HERA data χ^2 .

- Evidence that including N^3LO has reduced tensions between small and large-x.
- χ^2 reduction is **mostly due** to new theory, not just from K-factors included in fit.

Dataset	χ^2/npts	$\Delta \chi^2$ from NNLO	$\Delta \chi^2$ from NNLO (with NNLO K-factors)
HERA e^+p NC 82 $\overline{0}$ GeV	84.0 / 75	-5.8	-5.5
HERA e^-p NC 460 GeV	247.1 / 209	-1.2	-0.4
HERA e^+p NC 920 GeV	476.2 / 402	-36.5	-33.3
HERA e^-p NC 575 GeV	247.9 / 259	-15.1	-14.4
HERA e^-p NC 920 GeV	243.4 / 159	-1.0	-1.0
ATLAS 8 TeV $Z p_T$	106.3 / 104	-82.2	-52.5

$\alpha_S(M_Z^2)$ and m_c

- Both $\alpha_S(M_Z^2)$ and m_c show a quadratic behaviour around their respective minima.
- Best fit of $\alpha_S(M_Z^2)$ is settling around 0.117
 - MSHT20 NNLO $\alpha_{S}(M_{Z}^{2}) = 0.1175$
 - MSHT20 NLO $\alpha_S(M_Z^2) = 0.1203$
- Both these results suggest that the fit is preferring a **slight suppression** of the PDFs, particularly the enhanced gluon and charm.

N³LO Drell-Yan Processes

(K-factors up to N³LO)

- K-factors transform the hard cross section between orders.
- Predict a \sim 1% decrease in the DY K -factors from NNLO.
- In agreement with recent results found using NNLO PDFs with N³LO cross section^[15].

N³LO Top Processes

(K-factors up to N³LO)

- Top K-factors see an **overall increase** in magnitude, consistent with recent results^[16].
- χ^2 results show a marginally better fit overall.
- K-factors have successfully accounted for the theory changes in the F_2 structure function theory.
- K-factor for CMS 8 TeV single diff. $t\bar{t}$ shown here.

Higgs Predictions

For gluon fusion and Vector Boson Fusion (VBF)

- Good agreement between NNLO and N³LO for gluon fusion (top).
- Cancellation between N³LO cross section and PDFs not guaranteed.
- Less cancellation for VBF (bottom).
- However variation between orders is smaller for VBF σ .

$$\label{eq:vbf} \text{VBF} \begin{array}{l} \text{NNLO} \ \sigma = 3.99 + 1.37\% - 1.66 \,\% \\ \text{N}^{3} \text{LO} \ \sigma = 4.17 + 1.75\% - 1.87 \,\% \end{array}$$

Summary

- Approximate N³LO PDFs are on their way.
- Provide an intuitive and controllable way to include theoretical uncertainties into PDFs.
- Preliminary results show **good agreement** with current N³LO results.
- Paper near to completion (and hopefully thesis soon afterwards).

References

- [1] J. Vermaseren, A. Vogt, and S. Moch, Nuclear Physics B, 724, 3–182 (2005)
- [2] S. Moch, B. Ruijl, T. Ueda, J. A. M. Vermaseren, and A. Vogt, Journal of High Energy, 1653, Physics, 2017, (2017)
- [3] A. Vogt et al., PoS LL2018, 050 (2018), 1808.08981
- [4] S. Moch, B. Ruijl, T. Ueda, J. A. M. Vermaseren, and A. Vogt, (2021), 2111.15561
- [5] S. Moch, B. Ruijl, T. Ueda, J. A. M. Vermaseren, and A. Vogt, Journal of High Energy, 1664, Physics, 2017, (2017)
- [6] I. Bierenbaum, J. Blumlein, and S. Klein, Nuclear Physics B, 820, 417 (2009)
- [7] M. Bonvini and S. Marzani, Journal of High Energy Physics, 2018, (2018)
- [8] J. Ablinger et al., Nucl. Phys. B, 886, 733 (2014), 1406.4654.
- [9] J. Ablinger et al., Nuclear Physics B, 890, 48–151 (2015)
- [10] J. Ablinger et al., Nuclear Physics B, 882, 263–288 (2014)
- [11] H. Kawamura, N. A. Lo Presti, S. Moch, and A. Vogt, Nucl. Phys. B, 864, 399 (2012),1689
- [12] R. D. Ball and R. L. Pearson, The European Physical Journal C, 81, (2021)
- [13] J. Blumlein et al., PoS, QCDEV2017, 031 (2017), 1711.07957
- [14] H. Kawamura, N. Lo Presti, S. Moch, and A. Vogt, Nuclear Physics B, 864, 399–468, 1682, (2012).
- [15] X. Chen et al., (2021), 2107.09085.
- [16] N. Kidonakis, Three-loop soft anomalous dimensions in QCD, in 15th International Symposium on Radiative Corrections: Applications of Quantum Field Theory to Phenomenology AND LoopFest XIX: Workshop on Radiative Corrections for the LHC and Future Colliders, 2021, 2109.14102
- [17] S. Bailey et. al., MSHT20 (2020).

Other references not directly mentioned but used for these results:

- [] G. Altarelli and G. Parisi, Nucl. Phys. B, 126, 298 (1977)
- [] E. G. Floratos, D. A. Ross, and C. T. Sachrajda, Nucl. Phys. B, 152, 493 (1979)
- [] A. Gonzalez-Arroyo and C. Lopez, Nucl. Phys. B, 166, 429 (1980)
- [] W. Furmanski and R. Petronzio, Phys. Lett. B, 97, 437 (1980)
- □ E. G. Floratos, C. Kounnas, and R. Lacaze, Nucl. Phys. B, 192, 417 (1981)
- [] S. Moch, J. Vermaseren, and A. Vogt, Nuclear Physics B, 688, 101–134 (2004)
- [] A. Vogt, S. Moch, and J. Vermaseren, Nuclear Physics B, 691, 129–181 (2004)
- [] M. Buza, Y. Matiounine, J. Smith, and W. L. van Neerven, The European Physical, 1668, Journal C, 1, 301–320 (1998).
- [] M. Buza, Y. Matiounine, J. Smith, and W. van Neerven, Nuclear Physics B, 485, 1670, 420–456 (1997).
- [] S. Catani, M. Ciafaloni, and F. Hautmann, Nucl. Phys. B, 366, 135 (1991).
- [] . Laenen and S.-O. Moch, Phys. Rev. D, 59, 034027 (1999), hep-ph/9809550

Full χ^2 Breakdown

Dataset	N _{pts}	χ^2	$\Delta \chi^2$ from
DCDMC F [114]	1(2	100.7	NNLO
BCDMS $\mu p F_2$ [114]	163	180.7	+0.5
BCDMS $\mu d F_2$ [114]	151	144.0	-2.0
NMC $\mu p F_2$ [115]	123	119.2	-4.9
NMC $\mu d F_2$ [115]	123	106.5	-6.2
SLAC <i>ep</i> F_2 [116, 117]	37	32.0	-0.0
SLAC ed F ₂ [116, 117]	38	21.6	-1.4
E665 $\mu d F_2 [118]$	53	64.3	+4.7
E665 $\mu p F_2 [118]$	53	67.1	+2.4
NuTeV $\nu N F_2 [119]$	53	38.7	+0.4
NuTeV $\nu N x F_3$ [119]	42	34.3	+3.6
NMC μn/μp [120]	148	128.4	-2.4
E866 / NuSea pp DY [<mark>60</mark>]	184	208.8	-16.2
E866 / NuSea pd/pp_DY [61]	15	7.7	-2.6
HERA $ep F_2^{\text{charm}}$ [121]	79	135.8	+3.6
NMC/BCDMS/SLAC/HERA	57	45.5	-23.0
F_L [114,115,117,122–124]			
CCFR $\nu N \rightarrow \mu \mu X $ [113]	86	69.0	+1.3
NuTeV $\nu N \rightarrow \mu \mu X$ [113]	84	55.3	-3.1
CHORUS $\nu N F_2$ [125]	42	32.9	+2.7
CHORUS $\nu N x F_3$ [125]	28	19.5	+1.0
HERA e^+p CC [126]	39	51.6	-0.4
HERA e^-p CC [126]	42	66.3	-3.8
HERA e^+p NC 820 GeV [126]	75	84.0	-5.8
HERA $e^{-}p$ NC 460 GeV [126]	209	247.1	-1.2
HERA e^+p NC 920 GeV [126]	402	476.2	-36.5
HERA $e^{-}p$ NC 575 GeV [126]	259	247.9	-15.1
HERA $e^{-}p$ NC 920 GeV [126]	159	243.4	-1.0
CDF II $p\bar{p}$ incl. jets [82]	76	68.7	+8.3
$D\emptyset \text{ II } Z \text{ rap. } [62]$	28	16.8	+0.5
CDF II Z rap. [63]	28	39.6	+2.5
DØ II $W \rightarrow \nu \mu$ asym. [64]	10	16.7	-0.6
CDF II W asym. [65]	13	20.1	+1.1

Dataset	$N_{\rm pts}$	χ^2	$\Delta \chi^2$ from
	1		NNLO
DØ II $W \rightarrow \nu e$ asym. [66]	12	29.0	-5.0
DØ II $p\bar{p}$ incl. jets [83]	110	113.6	-6.7
ATLAS W^{+}, W^{-}, Z [67]	30	29.9	-0.0
CMS W asym. $p_T > 35 \text{GeV}$ [68]	11	7.0	-0.8
CMS W asym.	24	7.5	+0.1
$p_T > 25,30 \text{ GeV } [69]$			
LHCb $Z \rightarrow e^+e^-$ [70]	9	20.6	-2.1
LHCb W asym. $p_T > 20 \text{ GeV } [71]$	10	12.9	+0.4
CMS $Z \rightarrow e^+e^-$ [72]	35	17.3	-0.6
ATLAS High-mass Drell-Yan [73]	13	18.6	-0.3
Tevatron, ATLAS, CMS	17	14.1	-0.5
$\sigma_{t\bar{t}}$ [97–109]			
CMS double diff. Drell-Yan [74]	132	136.8	-7.7
LHCb 2015 W, Z [57,58]	67	97.1	-2.3
LHCb 8TeV $Z \rightarrow ee$ [75]	17	26.9	+0.7
CMS 8 TeV W [76]	22	12.1	-0.6
ATLAS 7 TeV jets [84]	140	214.0	-7.6
CMS 7 TeV $W + c$ [88]	10	12.2	+3.6
ATLAS 7 TeV high prec. W, Z [59]	61	110.4	-6.2
CMS 7 TeV jets [81]	158	189.9	+14.1
DØW asym. [77]	14	8.8	-3.3
ATLAS 8 TeV $Z p_T$ [87]	104	106.3	-82.2
CMS 8 TeV jets [85]	174	271.9	+10.6
ATLAS 8 TeV sing. diff. $t\bar{t}$ [110]	25	25.0	-0.7
ATLAS 8 TeV sing. diff. $t\bar{t}$	5	2.2	-1.2
dilep. [111]			
ATLAS 8 TeV High-mass DY [78]	48	63.8	+6.6
ATLAS 8 TeV $W + \text{jets}$ [89]	30	19.2	+1.1
CMS 8 TeV double diff. $t\bar{t}$ [112]	15	23.8	+1.3
ATLAS 8 TeV W [79]	22	54.8	-2.6
CMS 2.76 TeV jet [86]	81	113.7	+10.8
CMS 8 TeV sing. diff. $t\bar{t}$ [91]	9	8.3	-4.9
ATLAS 8 TeV double diff. Z [80]	59	81.5	-4.1

Comparison with/without K-factors

DY Dataset	χ^2	$\Delta \chi^2$	$\Delta \chi^2$ from NNLO
		from NNLO	(NNLO K-factors)
E866 / NuSea pp DY [60]	208.8 / 184	-16.2	-11.6
E866 / NuSea pd/pp DY [61]	7.7 / 15	-2.6	-2.9
DØ II Z rap. [62]	16.8 / 28	+0.5	+0.3
CDF II Z rap. [63]	39.6 / 28	+2.5	+1.3
DØ II $W \rightarrow \nu \mu$ asym. [64]	16.7 / 10	-0.6	-0.5
CDF II W asym. [65]	20.1 / 13	+1.1	+0.8
DØ II $W \rightarrow \nu e$ asym. [66]	29.0 / 12	-5.0	-5.3
ATLAS W^{+} , W^{-} , Z [67]	29.9 / 30	-0.0	+0.3
CMS W asym. $p_T > 35 \text{ GeV } [68]$	7.0 / 11	-0.8	-0.6
CMS W asym. $p_T > 25,30 \text{ GeV } [69]$	7.5 / 24	+0.1	-0.1
LHCb $Z \rightarrow e^+e^-$ [70]	20.6 / 9	-2.1	-1.6
LHCb W asym. $p_T > 20 \text{ GeV } [71]$	12.9 / 10	+0.4	+1.0
CMS $Z \rightarrow e^+e^-$ [72]	17.3 / 35	-0.6	-0.6
ATLAS High-mass Drell-Yan [73]	18.6 / 13	-0.3	-1.1
CMS double diff. Drell-Yan [74]	136.8 / 132	-7.7	+11.9
LHCb 2015 W, Z [57,58]	97.1 / 67	-2.3	-2.8
LHCb 8TeV $Z \rightarrow ee$ [75]	26.9 / 17	+0.7	-0.2
CMS 8 TeV W [76]	12.1 / 22	-0.6	+0.2
ATLAS 7 TeV high prec. W, Z [59]	110.4 / 61	-6.2	-18.7
DØ W asym. [77]	8.8 / 14	-3.3	-1.8
ATLAS 8 TeV High-mass DY [78]	63.8 / 48	+6.6	+2.8
ATLAS 8 TeV W [79]	54.8 / 22	-2.6	-1.1
ATLAS 8 TeV double diff. Z [80]	81.5 / 59	-4.1	-1.9
Total	1044.6 / 864	-43.2	-32.1

Jets Dataset	χ^2	$\Delta \chi^2$	$\Delta \chi^2$ from NNLO
		from NNLO	(NNLO K-factors)
CDF II $p\bar{p}$ incl. jets [82]	68.7 / 76	+8.3	+0.6
DØ II $p\bar{p}$ incl. jets [83]	113.6 / 110	-6.7	-3.5
ATLAS 7 TeV jets [84]	214.0 / 140	-7.6	+2.4
CMS 7 TeV jets [81]	189.9 / 158	+14.1	+14.5
CMS 8 TeV jets [85]	271.9 / 174	+10.6	+22.9
CMS 2.76 TeV jet [86]	113.7 / 81	+10.8	+13.5
Total	971.7 / 739	+29.6	+50.3

Dimuon Dataset	χ^2	$\Delta \chi^2$	$\Delta \chi^2$ from NNLO
		from NNLO	(NNLO K-factors)
CCFR $\nu N \rightarrow \mu \mu X$ [113]	69.0 / 86	+1.3	+2.6
NuTeV $\nu N \rightarrow \mu \mu X$ [113]	55.3 / 84	-3.1	-3.1
Total	124.3 / 170	-1.8	-0.5

DIS Dataset	χ^2	$\Delta \chi^2$	$\Delta \chi^2$ from NNLO
	Λ	from NNLO	(NNLO K-factors)
BCDMS μp F ₂ [114]	180.7 / 163	+0.5	+0.1
BCDMS $\mu d F_2$ [114]	144.0 / 151	-2.0	-1.1
NMC $\mu p F_2 [115]$	119.2 / 123	-4.9	-7.0
NMC $\mu d F_2$ [115]	106.5 / 123	-6.2	-10.2
SLAC <i>ep</i> F_2 [116,117]	32.0 / 37	-0.0	+0.5
SLAC <i>ed</i> F_2 [116, 117]	21.6 / 38	-1.4	-1.4
E665 μp F ₂ [118]	64.3 / 53	+4.7	+5.7
E665 μd F ₂ [118]	67.1 / 53	+2.4	+2.8
NuTeV $\nu N F_2$ [119]	38.7 / 53	+0.4	+1.7
NuTeV $\nu N x F_3$ [119]	34.3 / 42	+3.6	+1.9
NMC μn/μp [120]	128.4 / 148	-2.4	-2.6
HERA $ep F_2^{\text{charm}}$ [121]	135.8 / 79	+3.6	+9.1
NMC/BCDMS/SLAC/HERA	45.5 / 57	-23.0	-23.3
F_L [114, 115, 117, 122–124]			
CHORUS $\nu N F_2$ [125]	32.9 / 42	+2.7	+3.0
CHORUS $\nu N x F_3$ [125]	19.5 / 28	+1.0	+1.1
HERA e^+p CC [126]	51.6 / 39	-0.4	+0.3
HERA e^-p CC [126]	66.3 / 42	-3.8	-3.0
HERA $e^+ p$ NC 820 GeV [126]	84.0 / 75	-5.8	-5.5
HERA $e^{-}p$ NC 460 GeV [126]	247.1 / 209	-1.2	-0.4
HERA e^+p NC 920 GeV [126]	476.2 / 402	-36.5	-33.3
HERA $e^{-}p$ NC 575 GeV [126]	247.9 / 259	-15.1	-14.4
HERA $e^{-}p$ NC 920 GeV [126]	243.4 / 159	-1.0	-1.0
Total	2587.0 / 2375	-84.7	-76.8

Top Dataset	χ^2	$\Delta \chi^2$	$\Delta \chi^2$ from NNLO
		from NNLO	(NNLO K-factors)
Tevatron, ATLAS, CMS $\sigma_{t\bar{t}}$ [97–109]	14.1 / 17	-0.5	-0.7
ATLAS 8 TeV single diff. $t\bar{t}$ [110]	25.0 / 25	-0.7	-0.0
ATLAS 8 TeV single diff. $t\bar{t}$ dilep. [111]	2.2 / 5	-1.2	-0.7
CMS 8 TeV double diff. $t\bar{t}$ [112]	23.8 / 15	+1.3	+4.9
CMS 8 TeV single diff. $t\bar{t}$ [91]	8.3 / 9	-4.9	-5.4
Total	73.3 / 71	-6.0	-2.0

p_T Jets Dataset	χ^2	$\Delta \chi^2$	$\Delta \chi^2$ from NNLO
		from NNLO	(NNLO K-factors)
CMS 7 TeV $W + c$ [88]	12.2 / 10	+3.6	+1.3
ATLAS 8 TeV $Z p_T$ [87]	106.3 / 104	-82.2	-52.5
ATLAS 8 TeV $W + \text{jets}$ [89]	19.2 / 30	+1.1	+0.4
Total	137.7 / 144	-77.5	-50.9

Approximate N³LO Splitting Functions

Approximate N³LO Transition Matrix Elements

DGLAP Evolution

Usage of N³LO PDFs

- For DIS processes, using the standard PDF set is advised.
- For any of the other 5 processes included in the fit (which we fit K-factors for), we provide the full details of these fitted N3LO K-factors.
- For processes not included in the fit, this will be a little more involved.
 - Full details and instructions will be provided with the paper and PDF set release.

MSHT Approximate N³LO PDFs

- MHOUs are leading source of theoretical uncertainty.
- Parameterisation of N³LO F_2 structure function (incl. N³LO splitting functions) and N³LO K-factors for a consistent N³LO fit.

 Overall better fit to data - reduced tensions between small and large-x.

- Results show a harder gluon → enhanced charm.
- In agreement with recent N³LO results DY and Top process K-factors. arXiv: 2107.09085, 2203.03698
- Paper and PDF sets available (very) soon.

A bit of revision...

- PDFs probability of a parton fluctuating out of proton.
- Coefficient function perturbatively calculated.

$$C(x,Q^2) = C^{(0)}(x,Q^2) + \alpha_s C^{(1)}(x,Q^2) + \alpha_s^2 C^{(2)}(x,Q^2) + \alpha_s^3 C^{(3)}(x,Q^2) + \dots$$

• PDFs are determined from experiment using complex parameterisations.

• 'Global' fit using many different data sets and processes.

What do we know?

...and what don't we know?

- Some knowledge of **leading terms** in the $x \to 0$ regime.
- Some numerical constraints (Low-integer Mellin moments).
- Intuition from lower orders/expectations from perturbation theory.

• Can attempt to parameterise the N³LO functions.

$$\mathscr{M}[f(x)](N) = \int_0^1 dx x^{N-1} f(x)$$

A bit of revision...

 Scale dependence of PDFs is also calculable in QCD perturbation theory!

$$\mu^2 \frac{d}{d\mu^2} f(x, \mu^2) = P(x, \alpha_s(\mu^2)) \otimes f(x, \mu^2)$$

$$P(x, \alpha_s) = \alpha_s P^{(0)}(x) + \alpha_s^2 P^{(1)}(x) + \alpha_s^3 P^{(2)}(x) + \alpha_s^4 P^{(3)}(x) + \dots$$

where $P(x, \alpha_s)$ are the splitting functions.

• PDFs parameterised at a starting scale Q_0^2 and **evolved** to a desired scale Q^2 .

Takeaway: Perturbatively calculable quantities are essential **ingredients** for PDF **determination** (and making predictions using PDFs).

