PB TMD fits at NLO with dynamical resolution scale

- S. Sadeghi1,2, F. Hautmann1,3, H. Jung4, L. Keersmaekers1, A. Lelek1, S. Taheri Monfared4

1 University of Antwerp (UAntwerp)
2 Shahid Beheshti University (SBU)
3 University of Oxford
4 Deutsches Elektronen-Synchrotron (DESY)
Outline

- Recap of Parton Branching method
- Fixed and Dynamical soft-gluon resolution scale z_M
- Fits with fixed z_M at NLO
- Fits with dynamical z_M at NLO

Merged talk:
- $Z+b$ jet production in 4FL and 5FL
Recap of PB TMDs

TMD evolution in the PB formalism:

\[\widetilde{A}_a(x, k_\perp, \mu^2) = \]
\[A_a(x, k_\perp, \mu_0^2) \Delta_a(\mu^2) + \sum_b \int \frac{d^2\mu'_\perp}{\pi\mu'^2} \Theta(\mu^2 - \mu'^2) \Theta(\mu'^2 - \mu_0^2) \frac{\Delta_a(\mu^2)}{\Delta_a(\mu_0^2)} \int_z^{Z_M} dz \int \frac{d^2q_\perp}{\pi^2} \Gamma(\alpha_s q_\perp^2, z) \]

- **Splitting functions**: \(P_{ab}^R(z) \): The real emission parts of the DGLAP splitting function:
 - Probability that a branching will happen

- **Sudakov form factor**: \(\Delta_a = \exp(- \int_{\ln \mu_0^2}^{\ln \mu^2} d(\ln \mu'^2) \sum_b \int_0^{Z_M} dz \int \frac{d^2q_\perp}{\pi^2} \Gamma(\alpha_s q_\perp^2, z) P_{ba}^R(\alpha_s, z)) \)
 - The probability of an evolution without any resolvable branching

- **Resolution scale**: \(Z_M \):
 - Resolvable branching: \(z < Z_M \)
 - Non-resolvable branching: \(z > Z_M \)

At every step kinematics can be calculated!

[Hautmann et al., JHEP 01 (2018) 070, 1708.03279]
Recap of PB TMDs

Iterative form of the PB evolution equation:

\[
\tilde{A}_a(x, k_\perp, \mu^2) = \tilde{A}_a(x, k_\perp, \mu_0^2) \Delta_a(\mu^2) + \Sigma_b \int_{\ln \mu_0^2}^{\ln \mu^2} d \ln \mu_1^2 \times \frac{\Delta_a(\mu^2)}{\Delta_a(\mu_1^2)} \int_x^{z_M} dz \; P_{ab}^R(z, \alpha_s(q_\perp)) \Delta_b(\mu_1^2) \times \tilde{A}_b \left(\frac{x}{z}, k_\perp + (1 - z) \mu_1, \mu_0^2\right) + \ldots
\]

Solvable by MC iterative technique:

- generated \(\mu_1^2 \): if \(\mu_1^2 > \mu^2 \) stop, otherwise splitting,
- generated the next scale \(\mu_2^2 \): if \(\mu_2^2 > \mu^2 \) stop, otherwise splitting,
- ...
Angular Ordering:

Color coherence phenomena:

• Angular ordering of the soft gluon emissions
 \[\theta_{i+1} > \theta_i \]
 \[|q_{\perp,i}| = (1 - z_i) \ |E_i| \sin \theta_i \]

 Associating \(|E_i| \sin \theta_i\) with \(\mu'\)
 \[q_{\perp,i}^2 = (1 - z_i)^2 \ \mu_i'^2 \]

• The argument of \(\alpha_s\) should be \(q_\perp^2\)
 \[\alpha_s(q_\perp^2) = \alpha_s((1 - z)^2 \mu'^2) \]

• resolvable & non-resolvable \(\rightarrow\) condition on \(\min q_{\perp,i}^2 \rightarrow z_M\)
 \[z_M = 1 - \left(\frac{q_0}{\mu'} \right) \]
Fixed and dynamical resolution scale

- **Fixed z_M:**
 - μ independent

 $z_M = 1 - \epsilon$

 where ϵ is small: 10^{-3}, 10^{-4}, 10^{-5},...

- **Dynamical Resolution scale in Angular Ordering:**

 $z_M = 1 - \left(\frac{q_0}{\mu'}\right)$

 where q_0 is smallest emitted transverse momentum for resolvable partons

 - Sudakov form factor Δ_a: non-resolvable region
 - Splitting functions P_{ab}^R: resolvable region

The Condition on q_0 of

$$z_M = 1 - \left(\frac{q_0}{\mu'} \right)$$

- Scale of strong coupling:
 $$\alpha_s(q^2_\perp) = \alpha_s((1 - z)^2 \mu'^2)$$

- Lowest scale in α_s corresponds to minimal q_\perp

- $q_{\perp,\text{min}} = q_0 \quad \& \quad q_0 > \Lambda_{QCD} \Rightarrow \text{we stay in the weak coupling region!}$

$\Lambda_{QCD} \approx 0.2 \text{ GeV}$
PB TMD fits at NLO with fixed z_{max}

The Past PB TMD fits at NLO calculation using angular ordering: fixed z_M
"NLO DIS Matrix Element (ME) and NLO evolution kernel"

- Associating the evolution scale with some physical interpretation:
 - Set 1
 \[\alpha_s(\mu'^2) \]
 - Set 2
 \[\alpha_s(q^2_{\perp}) = \alpha_s((1 - z)^2\mu'^2) \]

- Data set: HERA 1+ 2 inclusive DIS data

<table>
<thead>
<tr>
<th>μ_0^2</th>
<th>χ^2</th>
<th>d.o.f</th>
<th>χ^2/d.o.f</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9 GeV2</td>
<td>1363.37</td>
<td>1131</td>
<td>1.21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>μ_0^2</th>
<th>χ^2</th>
<th>d.o.f</th>
<th>χ^2/d.o.f</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4 GeV2</td>
<td>1369.80</td>
<td>1131</td>
<td>1.21</td>
</tr>
</tbody>
</table>

- Measurement of the inclusive DIS cross section obtained at HERA compared to predictions using Set 1 and Set 2
PB TMD fits at NLO with dynamical z_{max}

New study

From fixed resolution scale to dynamical resolution scale
PB TMD fits at NLO with dynamical z_{max}: $z_M = 1 - \left(\frac{q_0}{\mu^2} \right)$

New fits with dynamical z_{max} at LO and NLO with HERA 1 + 2 Data set: Using \texttt{Fitter} arXiv:1709.01151v1

✓ Performing different fits, each time by varying Q_{min}^2 and on top of that with different q_0 values.

- At LO, for small Q_{min}^2 and $0.9 \text{ GeV} < q_0 < 1.2 \text{ GeV} \rightarrow 2.2 < \frac{\chi^2}{\text{dof}} < 3$
- AT NLO, for small Q_{min}^2 and all values of q_0, we have better fits with good $\frac{\chi^2}{\text{dof}}$!
The difference between LO and NLO

- Does the difference between LO and NLO come from the kernels? or ME?!..

- The difference is dominated by the kernel not ME!..

4 states for this purpose:
1. Fitting with NLO kernel & NLO ME
2. Fitting with NLO kernel & LO ME
3. Fitting with LO kernel & LO ME
4. Fitting with LO kernel & NLO ME

For $q_0=1.0 \text{ GeV}$
The difference between LO and NLO

• Which part of the kernel is responsible?

\[P_{ab}(z, \mu^2) \text{? or } \alpha_s ? \]

4 states for this purpose:
1. Fitting with NLO \(P_{ab} \) & NLO \(\alpha_s \)
2. Fitting with NLO \(P_{ab} \) & LO \(\alpha_s \)
3. Fitting with LO \(P_{ab} \) & LO \(\alpha_s \)
4. Fitting with LO \(P_{ab} \) & NLO \(\alpha_s \)

The difference is dominated by the splitting functions not \(\alpha_s \)!
Which part of the splitting functions is responsible for the difference between LO and NLO?

- For high values of q_0 (e.g., [1.0 Gev, 1.2 Gev]) or low values of $z_M = 1 - \left(\frac{q_0}{\mu'}\right)$, LO and NLO have different behavior.

 The first piece for checking is $\frac{1}{z}$

- In the NLO, all the splitting functions have pieces with $(1/z)$ term:
 \[P_{ab}(z, \mu^2) \sim P_{qq}(1/z, \mu^2), P_{qg}(1/z, \mu^2), P_{gg}(1/z, \mu^2), P_{gq}(1/z, \mu^2) \]

- In the LO, just the splitting functions with “gluon” in the final state have $(1/z)$ piece:
 \[P_{gg}(z, \mu^2) = \frac{1}{1-z} + \frac{1}{z} - 2 + z(1-z), \]
 \[P_{gq}(z, \mu^2) = \frac{1+(1-z)^2}{z} \]

- And the splitting functions with “quark” in the final state don’t have $(1/z)$ piece:
 \[P_{qq}(z, \mu^2) = \frac{2}{1-z} - 1 - z, \]
 \[P_{qg}(z, \mu^2) = z^2 + (1-z)^2 \]

- Is the lack of $(1/z)$ piece in LO splitting function with quark in the final state responsible for this difference?

 Let’s check it!
Does the difference come from 1/z piece of NLO splitting function?

For better understanding: “We added to the LO splitting functions (P_{qq}, P_{qg}) the 1/z pieces of NLO”

✓ $P_{qq} (z, \mu^2) = \frac{2}{1-z} - 1 - z + \left(\frac{1}{z} \right)$ pieces of P_{qq} NLO

✓ $P_{qg} (z, \mu^2) = z^2 + (1 - z)^2 + \left(\frac{1}{z} \right)$ pieces of P_{qg} NLO

✓ In NLO we have an extra (1/z) pieces in the quark channels compared with LO which is responsible for this difference!

✓ With this piece we are describing data well! Amount of χ^2_{dof} is reasonably good!

** For PB-TMD fit with dynamical zmax we obtain a reasonably good χ^2_{dof} at NLO! **
How does dynamical zmax affect the fitted TMD (iTMD)?

Set 2: fixed zmax & $\alpha_s(q_T^2) = \alpha_s((1 - z)^2 \mu'^2)$

The dynamical zmax fit implies an effect not only in the k_T dependence but also in the x dependence!
The predictions in dynamical z_{max} frame

Predictions with ME generated by MCatNLO combined with obtained TMDs.
The merged talk: $Z+b$ jet production in 4FL and 5FL

5 FLNS
- Full coupled evolution with all flavours & $\alpha(M_{Z_{nf=5}})=0.118$
- HERAPDF parametrization form
- Using full HERAI+II inclusive DIS data
- $\chi^2/\text{dof}=1.21$

4 FLNS
- The same functional form and data as 5FL-parameters re-fitted
- $M_b \rightarrow \infty$ & $\alpha(M_{Z_{nf=4}})=0.1128$
- $\chi^2/\text{dof}=1.25$

[arXiv:2106.09791]

Matrix elements from MC@NLO (HERWIG6 subtraction)
- 5FLVNS: $Z + $ one parton process
- 4FLVNS: $Z + bb$ process

PDFs: TMDs (4FL & 5FL)
- 5FLVNS: b-quark is treated as a light quark
- 4FLVNS: no b-quark in the parton density

Parton shower following TMDs for intial state
- 5FL & 4FL PB-TMDs included in the Cascade3

Differential cross section for $Z + b\bar{b}$ as a function of $p_t(Z)$ as measured by CMS collaboration.

The full prediction + the result of using only the LHE files are shown.
Z+bb as a function of $\Delta \phi$ ($b\bar{b}$)

Differential cross section for Z +b$b\bar{b}$ as a function of $\Delta \phi$ ($b\bar{b}$) as measured by CMS collaboration

5 FLNS

CMS, 8 TeV, DeltaPhi bb, at least two b jets

- **Data**
- $Z+\bar{t}$ (5FL NLO)
- $Z+\bar{t}$ (5FL-PB-NLO-2018-set2 (scale))
- $Z+\bar{t}$ (5FL NLO LHE (scale))

4 FLNS

CMS, 8 TeV, DeltaPhi bb, at least two b jets

- **Data**
- $Z+bb$ (4FL NLO)
- $Z+bb$ (4FL-PB-NLO-2020-set2 (scale))
- $Z+bb$ (4FL NLO LHE (scale))

4FL : both b partons are already produced at the ME level

5FL : $bb\bar{b}$ must be simulated in the parton shower.
Breakdown of the different contributions to quantify their roles

4FL: weakly depends on PB-TMD/parton shower
5FL: significant contribution from TMD parton shower
Summary

- PB TMD fits at NLO with dynamical zmax for the first time!
- For PB-TMD fit to HERA data with dynamical zmax, we obtain a reasonably good $\frac{\chi^2}{dof}$ at NLO!
- The difference between LO and NLO fits is mostly due to (1/z) pieces in quark channel in NLO splitting functions!
- The dynamical zmax impacts both the k$_T$ dependence and the x dependence of the fitted parton distribution!
- The next step: Using the PB TMD with dynamical zmax in phenomenology of LHC and lower energy colliders!
- The 4FL and 5FL PB-TMD distributions used to calculate Z + bb production
 - Good agreement with measurements obtained by the CMS collaboration
 - The evolution of the PB-TMD parton densities as well as in the PB-TMD parton shower is checked.

Thank you …
BACK UP …
Back up…
PB TMD fits at NLO with dynamical z_{max}:

NLO fits with dynamical z_{max}

$Q_{\text{min}}^2 = 2, 3.5, ..., 100$ GeV2