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Abstract

We present a more reliable approach to approximate the unknown next-to-next-to-next-to-leading
order (N3LO) transverse momentum distribution of colourless final states, namely the Higgs boson
produced via gluon fusion and the lepton pair produced via Drell–Yan (DY) mechanism. The ap-
proximation we construct relies on the combination of various resummation formalisms – namely
threshold, small-pt and high energy resummations – by exploiting the singularity structure of the
large logarithms in Mellin space. We show that for the case of Higgs boson production, the approxi-
mate N3LO transverse momentum distribution amounts to a correction of a few percent with respect
to the NNLO result with a reduction in the scale dependence.
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1 Introduction

In order to push forward precision and discovery physics at the LHC, the three pillars of QCD – namely
fixed-order calculations, resummations, and PDFs – need to be determined at the highest accuracy possible
(sub one percent). While significant, much work remains on the side of perturbative calculations, both in
terms of fixed-order computations and resummations. Given that pushing the accuracy of the fixed-order
computations is a gigantic task, it is crucial to estimate the missing higher-order contributions to the best of
our abilities. Currently, the most commonly used way of estimate theoretical uncertainties associated with
missing higher-order contributions is by varying the unphysical scales involved in the process according to
a scale variation prescription. On one hand, the use of scale variation to estimate the missing higher-order
uncertainties (MHOU) presents several advantages. First, due to the fact that the scale dependence of the
strong coupling and PDFs are universal, scale variations can be used to estimate theoretical uncertainties
for any perturbative processes. Second, the constraint imposed by the renormalization group invariance
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ensures that as the order of the perturbative calculations increases, the scale dependence decreases. Third,
the estimation of MHOU resulting from scale variations produces smooth functions of the kinematics, ac-
counting for the correlations in the nearby regions of the phase space. On the other hand, the scale variation
method has a number of caveats, chief among which is the fact that it does not allow for a probabilistic
interpretation. In addition, there is the ambiguity in defining the central scale around which the variation
should be performed and the ranges at which the scales are allowed to vary. But most importantly, scale
variation misses uncertainties associated to new singularities appearing at higher-orders but not present at
lower-orders. Various approaches [1–3] have recently merged in order to address the shortcomings related
to the scale variation method. However, most of these approaches are only applicable to particular types
of processes and observables. In Ref. [1] , Cacciari and Houdeau proposed a new approach of estimating
MHOU using a Bayesian model. In short, the method consists on adopting some assumptions on the pro-
gression of the perturbative expansion, then based on the knowledge of the first few orders, one can infer
on the hidden parameters that are assumed to bound the structure of the perturbative coefficients, allowing
for an inference on the unknown subsequent contributions. While this approach has proved to perform
well for QCD observables at e+e− colliders [1], its reliability when it comes to proton-proton collider ob-
servables is subject to question. In Ref. [3], Bonvini built upon Cacciari-Houdeau’s work to construct more
general, flexible, and robust models. The various models have been validated on various inclusive observ-
ables at the LHC. However, none of these models can as of yet be used for differential observables as the
correlations between the different regions are not accounted for.

A possible way to estimate (or rather approximate) the impacts of unknown higher-orders in perturba-
tion theory is by using the information provided by the resummed calculations. Given that the information
on the various kinematic limits that appear in fixed-order calculations are contained to all-order in re-
summed expressions, it should be possible to consistently combine these various limits to approximate the
subsequent unknown contributions. A similar approximation was done decades ago in the context of the
Higgs boson production from gluon fusion at the total inclusive level [4]. In the following, we provide a
proof of concept on how to combine the different resummation formulae to approximate the N3LO trans-
verse momentum distributions for the Higgs boson productions in the infinite top mass limit. The eventual
aim of the project is to extend the formalism to DY processes and use it to approximate MHOU in PDF fits.
Throughout this manuscript, the counting refers to the order at the integrated level, i.e. N3LO refers to
O(α5

s ) in the expansion of the transverse momentum distributions.

2 Higgs boson production in HEFT

To the present day, the inclusive and transverse momentum distributions of the Higgs boson produced via
gluon fusion are known to a fairly high precision. The total inclusive cross section with finite top-quark
mass is known up to N3LO [5]. Recently, the N3LO⋆ transverse momentum distributions for the Higgs
produced with an associated jet in the final state have become available [6]. However, since these results
are often obtained numerically, reading off the coefficients that are relevant for the comparison to the
all-order computations is not practically feasible.

In the following sections, we present a formalism for the construction of the Higgs transverse momen-
tum distribution beyond NNLO by combining the information on the singularity structure at small-N and
large-N which can be predicted by the high-energy and threshold resummation formulae, respectively.
Threshold resummation embodies to all orders in αs logarithms of the form ln N that drives the transverse
momentum spectra in the limit N →∞, while the (N − 1)n behaviour for N → 1 is fully determined to
all orders by the small-x resummation. Therefore, for a partonic cross section known up to NnLO (i.e.
O(αn+2

s )), the approximate expression is constructed as a combination of fixed-order calculations and ex-
pansion from resummations:
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Figure 1: Plots comparing the relative difference between the exact and approximate solutions
at NNLO for the g g-channel at different values of pT . The error bands have been computed
using the 7-point scale variation method. The codes used to generate the predictions both in
momentum and Mellin space are publicly available [8,9].

where ξp ≡ p2
T/M2 is a dimensionless variable with M the invariant mass of the produced Higgs boson.

Notice that no matching function is introduced when combining the two resummed cross sections. This
means that the second part of Eq. (1) is only valid if the small-N behaviour controlled by the high-energy
contribution is not spoiled by the threshold component and vice-versa.

In order to construct our approximate expression, let us first describe the large-N approximation of the
partonic cross section in Eq. (1). The analytical expression of the threshold resummation for transverse
momentum distributions with colour singlet in the final state has been derived in [7]. By expanding the
expression as a series in αs one can extract the terms relevant for the approximation. However, the way
in which the logarithms of N appear in the expansion does not correspond to the Mellin transform of
the x-space expressions which spoils the finite-N behaviour. In addition, the resulting expressions display
unphysical singularities. Indeed, as opposed to exhibiting poles at small-N , the expressions contain a
logarithmic branch cut at N = 0. The correct singularity structure in the small-N region of the resummed
expression can be restored by resorting to the Ψ-soft prescription in which the logarithms of N are simply
replaced by the digamma functions as has been done for inclusive Higgs production in Ref. [4]. Doing so
yields the following resummed expression:
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where C̃ collects all the non-logarithmic dependence and g̃n,k are numerical coefficients. We should empha-
size that in the above equation the born-level cross section which contains O(α2

s ) contribution is included
in the definition of the coefficient C̃.

The leading logarithmic (LLx) high-energy resummation for the transverse momentum distribution of
the Higgs boson in HEFT has been derived in Ref. [10]. The computations were performed by keeping the
initial-state gluons off their mass-shell, p2

i = |pT,i|2 from which the impact parameter that defines the cross
section is derived. For the g g-channel, for instance, the expanded resummed expression up to NNLO is
written as:
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In view of combining the high-energy approximation and the threshold approximation, one has to make
sure that the small-N contributions vanish at moderately large-N . From Eq. (3) one can see that not only
the distribution always vanish in the large-N limit but also the vanishing point is located at the vicinity of
N ∼ 1 where effects from the threshold limit start to contribute.

In Fig.1 we compare the approximation to the exact NNLO result. By focusing first on the small-N region
(N < 1), it is apparent that the high-energy approximation reproduces the fixed-order computations fairly
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well. Not only do the uncertainty bands of the two results overlap, but in all cases the uncertainty bands
of the exact results are contained in the approximation. Moving to the region where N > 1, one notices
that small discrepancies persist between the exact and the approximate results.
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Figure 2: Approximate N3LO higgs transverse mo-
mentum distribution in HEFT approximation atp

s = 14 TeV.

These discrepancies however reduces as the
value of the transverse momentum increases. The
approximation would improve slightly if the con-
tributions from the small-pT resummation were in-
cluded. Nevertheless, omitting the small-pT con-
tributions in the HEFT is justified by the fact that
it coincides with the high-energy contributions at
small-pT and large-N .

In Fig. 2 we show the approximate N3LO Higgs
transverse momentum distribution at the hadronic
level. The inverse Mellin transform is computed us-
ing the contour deformation defined by the Min-
imal Prescription as described in [11]. For com-
parisons, both the exact NLO and NNLO are also
included. As in the previous figures, the un-
certainty bands have been computed using the
7-point scale variation. One can see that the
approximate N3LO transverse momentum distri-
bution amounts to a correction of a few per-
cent with respect to the NNLO result. As ex-
pected, the uncertainty band from the N3LO ap-
proximation is smaller compared to the one from
NNLO with the former fully contained in the lat-
ter.

3 Drell–Yan processes

The results presented here are for the Higgs production in the infinite top mass limit provides a relatively
simple case study as a proof of concept for the methodology. However, the eventual aim is to provide a set
of parton distribution functions (PDFs) accounting for MHOU approximated using resummations. For this
reason it is important to apply the methodology also to DY processes as it provides valuable information
about the proton structure.

The way in which the approximate N3LO expression is constructed for DY case is very similar to the
Higgs described above with the main difference that in the DY case the contributions from the small-pT
resummation have to be taken into account. While the analytical expressions of the small-pT and threshold
resummation formulae are available in the literature [7,11,12], only the large-b (or equivalently small-pT )
version is known for the high-energy limit in Ref. [13], which extends the formalism for the differential
cross-section for Higgs production as described in Ref. [10]. Since the resummation formalism in the small-
pT is known for DY processes, we are instead interested in the limit of large transverse momentum. This
requires redoing the calculation for DY transverse momentum presented in Ref. [13]. It is finally worth
noting that the derivation of the full expression is a complicated task given the non-trivial relation between
ln N and ln pT .
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4 Conclusions

We explored the idea of using all-order computations to approximate contributions from missing higher-
orders. The combination of the various resummation formalisms were carried out in Mellin space where
one can fully study the singularity structure of the resummed expressions. Such an approximation seem
to yield reasonable predictions as attested by the partonic and hadronic results. However, further work is
required in order to apply the approximation also to DY processes in particular for the goal of using the
approximation in PDF fits.

Acknowledgment: The authors thank Stefano Forte for useful discussions on combined resummation.
T.R. and R. S are supported by the European Research Council under the European Union’s Horizon 2020
research and innovation Programme (grant agreement n.740006). T. R. is also supported by an ASDI grant
of The Netherlands eScience Center.

References

[1] Matteo Cacciari and Nicolas Houdeau. Meaningful characterisation of perturbative theoretical un-
certainties. JHEP, 09:039, 2011.

[2] Emanuele Bagnaschi, Matteo Cacciari, Alberto Guffanti, and Laura Jenniches. An extensive survey of
the estimation of uncertainties from missing higher orders in perturbative calculations. JHEP, 02:133,
2015.

[3] Marco Bonvini. Probabilistic definition of the perturbative theoretical uncertainty from missing higher
orders. Eur. Phys. J. C, 80(10):989, 2020.

[4] Richard D. Ball, Marco Bonvini, Stefano Forte, Simone Marzani, and Giovanni Ridolfi. Higgs produc-
tion in gluon fusion beyond NNLO. Nucl. Phys. B, 874:746–772, 2013.

[5] Bernhard Mistlberger. Higgs boson production at hadron colliders at N3LO in QCD. JHEP, 05:028,
2018.

[6] Fabrizio Caola, Kirill Melnikov, and Markus Schulze. Fiducial cross sections for Higgs boson produc-
tion in association with a jet at next-to-next-to-leading order in QCD. Phys. Rev. D, 92(7):074032,
2015.

[7] Stefano Forte, Giovanni Ridolfi, and Simone Rota. Threshold resummation of transverse momentum
distributions beyond next-to-leading log. 6 2021.

[8] Tanjona Rabemananjara and Roy Stegeman. N3pdf/hpt-mon: Hpt-mon-v1.0.1, Jun 2021.

[9] Tanjona Rabemananjara and Roy Stegeman. N3pdf/hpt-n3lo: Hpt-n3lo-v1.0.0, Jun 2021.

[10] Stefano Forte and Claudio Muselli. High energy resummation of transverse momentum distributions:
Higgs in gluon fusion. JHEP, 03:122, 2016.

[11] Tanjona R. Rabemananjara. Phenomenology of combined resummation for Higgs and Drell-Yan.
JHEP, 12:073, 2020.

[12] Claudio Muselli, Stefano Forte, and Giovanni Ridolfi. Combined threshold and transverse momentum
resummation for inclusive observables. JHEP, 03:106, 2017.

[13] Simone Marzani. Combining QT and small-x resummations. Phys. Rev. D, 93(5):054047, 2016.

5


	Introduction
	Higgs boson production in HEFT
	Drell–Yan processes
	Conclusions
	References

