

Probing proton structure at LHCb

Menglin Xu

On behalf of the LHCb collaboration

- Single-arm forward spectrometer
 - \triangleright Designed for the heavy flavor physics with $2 < \eta < 5$
 - Coverage is complementary to ATLAS and CMS
 - **Extended to EW measurements**: excellent performance of tracking and muon detector

EW physics at LHCb

- LHCb has already delivered a strong program of physics with W and Z boson mainly probing QCD
- As a result of the forward acceptance, LHCb is ideally placed to study decays of highly boosted Z bosons, provides access to PDFs
 - > High Bjorken-*x* region
 - Low Bjorken-x region: has not been probed directly at electroweak energy scales before

DIS 2022

LHC 13 TeV Kinematics

Z production cross-section measurement

- Z boson production at LHC provide insights into the PDFs of the proton and test SM
- Measurements at LHCb are particularly important for constraining u-, d-quark PDFs at high x region
- Using LHCb 2016, 2017 and 2018 data: $5.1 \pm 0.1 \text{ fb}^{-1}$
- Very high purity, $N_{\rm bkg}/N_{\rm sig}$ ~2%

$$\frac{d\sigma_{Z\to\mu^+\mu^-}}{dy}(i) = \frac{N_Z(i) \cdot f_{FSR}^Z(i)}{\mathcal{L} \cdot \varepsilon_{REC}^Z(i) \cdot \Delta y(i)}$$

fiducial region

μ^{\pm}	di-muon	
$p_{\mathrm{T}} > 20\mathrm{GeV}/c$		
$2 < \eta < 4.5$	$60 < M_{\mu^+\mu^-} < 120 \text{GeV}/c^2$	

Z differential cross section: y(Z)

- Reasonable agreement between data and predictions, ratio(R) ~ 1
- FEWZ predictions systematically smaller than the measured results in the lower y(Z) region

$m{Z}$ differential cross section: Z- $m{p}_T$ and $m{\phi}_{m{\eta}}^*$

- ϕ_{η}^* : the scattering angle of the muons with respect to the proton beam direction in the rest frame of the dimuon system
- Reasonable agreement between data and predictions
- Provide a stringent test on different QCD calculations

Z double differential cross-section

- The first double differential cross-section measurement in the forward region
- No significant deviations are seen between measurements and the theoretical predictions

Z Integrated cross section

The most precise measurement in the forward region @ 13TeV

$$\sigma(Z \to \mu^+ \mu^-) = 195.3 \pm 0.23 \text{ (stat.)} \pm 1.5 \text{ (sys.)} \pm 3.9 \text{ (lumi.)} \text{ pb}$$

Z angular coefficient (A_i) measurement

- The kinematic distribution of the final-state leptons provides
 - > A direct probe of the polarization of the intermediate gauge boson
 - > Information about the QCD mechanisms underlying the boson production mechanism
- A_i : the ratio of helicity dependent cross-section over the unpolarized cross-section

$A_i - p_{\mathrm{T}}(Z)$

• The first measurements of the angular coefficients of Drell-Yan $\mu^+\mu^-$ pairs in the forward rapidity region of pp collisions @ 13TeV

- Measurements are at Born level
- The uncertainty is dominated by statistical uncertainty

$A_i - y(Z)$

- Reasonable agreement between the measurements and ResBos calculations for A_0 to $\Delta\,A_4$
- $A_0 A_2$: differences between measurements and predictions, especially in the highest y region
 - \rightarrow A y(Z) dependence in the QCD resummation or higher-order effects

A_i - Boer-Mulders TMD

[Phys. Rev. D 57 (1998), 5780] [Phys. Rev. D 60 (1999), 014012]

- A₂ is sensitive to the TMD
- The measured A_2 values deviates significantly from all predictions in the lowest p_T region for the low-mass region
 - Uncelarly nonpertubative spin-momentum correlations in the proton could lead to such variations as no phenomennological calculations are available

Intrinsic charm

- Extrinsic charm content of the proton arises due to perturbative gluon radiation
- Light front QCD predict non-perturbative intrinsic charm existents as valence-like charm content in the PDFs of proton

$$|\mathbf{proton}\rangle = |uud\rangle + \epsilon |uudc\bar{c}\rangle$$
?
 $\epsilon \lesssim \mathcal{O}(\%)$

Z + c measurement

- First study of Z boson produced in association with charm in the forward region, using full Run-II data, with optimized charm-jet identification [JINST 17 (2022) P02028]
- Measure $\sigma(Z_c)/\sigma(Z_i)$
 - \succ At NLO a percent-level valence-like IC contribution would produce significant enhancement in the ratio at high y(Z) region
 - \triangleright IC-allowed model at high y(Z) is largely unconstrained
 - Many jet-related systematics cancel in the ratio

fiducial region

Z bosons	$p_{\rm T}(\mu) > 20 {\rm GeV}, 2.0 < \eta(\mu) < 4.5, 60 < m(\mu^+\mu^-) < 120 {\rm GeV}$
Jets	$20 < p_{\rm T}(j) < 100 {\rm GeV}, 2.2 < \eta(j) < 4.2$
Charm jets	$p_{\rm T}(c \ {\rm hadron}) > 5 \ {\rm GeV}, \ \Delta R(j, c \ {\rm hadron}) < 0.5$
Events	$\Delta R(\mu, j) > 0.5$

[Phys. Rev. Lett. 128 (2022) 082001]

Z + c - Systematics uncertainties

	[Phys. Rev. Lett. 128 (2022) 082001
Source	Relative Uncertainty
c tagging DV-fit templates Jet reconstruction	$6-7\% \ 3-4\% \ 1\%$
Jet $p_{\rm T}$ scale & resolution	1%
Total	8%

- Leading systematic uncertainty due to *c*-tagging calibration [LHCb-DP-2021-006]
- Systematics almost cancel between y(Z) bins
 - Double ratios have good potential for future precision measurements

Z + c - Results

- Clear enhancement in **highest** y bin
- Inconsistent with No-IC theory at $>3\sigma$
- More consistent with expected effect form $|uudc\bar{c}\rangle$ component predicted by LFQCD
- Incorporating forward results into a global analysis should strongly constrain the large-x charm PDF
- Current results are statistically limited,
 Run-III dataset will allow for finer binning

Summary

- The knowledge of the PDFs is crucial for precision measurement at hadron colliders
- LHCb detector has proved its capability to do high-precision measumrents of EW observables
- With detector instrumentd in the forward region, LHCb results could provide unique information for the PDFs global fitting
 - \triangleright The sea quark in the larger x region
 - > The transverse momentum dependent PDFs
 - > The intrinsic charm in the proton

Back Up

Bore-Mulders TMD PDF

[Phys. Rev. D 57 (1998), 5780] [Phys. Rev. D 60 (1999), 014012]

- Bore-Mulders function
 - Describes a correlation between a transversely polarized quark (antiquark) in an unpolarized proton and the quarks' own nonperturbative momentum with the proton
 - Lead to an azimuthal $\cos(2\theta)$ dependence in Drell-Yan
- Transvers Momentum Dependent PDFs: TMD
 - The general PDFs describes the parton inside a proton
 - \triangleright Admit a finite quark transverse momentum k_T
 - Correlation between parton momentum and hadron spin

$gc \rightarrow Zc$ models

- NO IC [J. Phys. G43 (2016) 023001]
- PDF4LHC15 purely extrinsic
 - [Eur. Phys. J C76 (2016) 647]
 [JHEP 04 (2015) 040]
 - NNPDF3.0 IC allows global fit to include intrinsic charm where not excluded by existing measurements
 - > Uncertainties: experimental limits
- LFQCD $\langle x \rangle_{IC} = 1\%$ [JHEP 02 (2018) 059]
 - BHPS3 PDF set based on LFQCD calculations with a fixed intrinsic charm contribution
 - > Uncertainties: model assumptions

2022/5/4 DIS 2022

Z + c – displaced vertex c-tagger

- Reconstruct displaced vertices within jets
- Use 2D fit to corrected mass and number of tracks to distinguish charm jets from beauty and light
- $m_{\text{cor}}(DV) \equiv \sqrt{m(DV)^2 + [p(DV)\sin\theta]^2} + p(DV)\sin\theta$
- Templates from flavour-enhanced calibration samples

20

Prospects

- W charge asymmetry
 - > Valence quark: *u* and *d*
- W cross-section measurement
 - > s quark PDFs
- *V*+jet and other measurements
 - Large-x gluon, Medium-x gluon, strangeness....