Measurement of charmonium production in p + p and p + d interaction in the Fermilab SeaQuest experiment

DIS2022

May 2 - 6, 2022

Ching Him Leung

University of Illinois at Urbana-Champaign

Representing the SeaQuest Collaboration

- Performed at Fermilab
 - With a 120 GeV proton beam from Main Injector
 - A new spectrometer is constructed
- Design to probe the partonic structure of nucleons at larger \boldsymbol{x} compared to E866

Motivation

- SeaQuest experiment has obtained new dimuon production data with 120 GeV proton beam on hydrogen and deuterium targets over mass range of 2-9 GeV, containing both Drell-Yan and charmonium events
- Drell-Yan is an electromagnetic interaction in leading order
 - Sensitive to the quark and antiquark distribution in the nucleon
 - The p+d/p+p cross section ratio can provide information on the \bar{d}/\bar{u} asymmetry
- J/ψ are produced via strong interaction
 - Sensitive to quark and antiquark distribution as well as gluon distribution
 - Provide information complimentary to Drell-Yan data

Timeline

- Commissioning began in 2012 and data collection finished in July 2017
- Current analysis based on run2 and run3 data
- Corresponds to ~50% of the full data set

Integrated Protons (S:G2SEM)

SeaQuest Integrated Protons

. and not Busy: 1.4E+18 (38%)

3/31/14 - 7/7/17

May 4, 2022

Mass spectrum for proton on hydrogen

J. Dove et al, Nature volume 590, pages 561–565 (2021)

- The J/ψ peak as well as the Drell-Yan continuum at higher mass are clearly observed
- The ψ' shoulder is also visible

Drell-Yan $\sigma^{pd}/2\sigma^{pp}$ ratio

 The Drell-Yan process has been used to probe the sea quark asymmetry

$$\begin{array}{c|c} & & & & \\ \hline h_b & & & & \\ \hline q & & & \\ \hline \hline q & & & \\ \hline h_t & & & \\ \hline \end{array}$$

$$rac{d^2 \sigma_{DY}}{dx_b dx_t} = rac{4\pi lpha^2}{9x_b x_t s} \sum_i e_i^2 [q_i(x_b) ar{q}_i(x_t)_{1.4} + ar{q}_i(x_b) q_i(x_t)]$$

• For $x_b \gg x_t$, the cross-section ratio can be approximated as

$$egin{aligned} rac{\sigma_{pd}}{2\sigma_{pp}} pprox rac{1}{2} \left[1 + rac{ar{d}\left(x_{t}
ight)}{ar{u}(x_{t})}
ight] igg|_{x_{b}\gg x_{t}} \end{aligned}$$

J/ψ production and Drell-Yan process

The Drell-Yan is an electromagnetic process

- The J/ψ meson is produced via strong interaction:
 - Involve two subprocesses at LO $q \bar q$ annihilation and gluon fusion

May 4, 2022

7

Color Evaporation Model (CEM)

- The $c\bar{c}$ pairs production is calculated perturbatively, and a fixed probability F for hadronizing into a charmonium state
- The relative importance of each subprocess is a strong function of kinematics
 - The $q\bar{q}$ is more important at forward x_F

$$\left. rac{d\sigma}{dx_F}
ight|_{J/\Psi} = F \sum_{i,j=q,ar{q},G} \int_{2m_c}^{2m_D} dM_{car{c}} rac{2M_{car{c}}}{s\sqrt{x_F^2+4M_{car{c}}^2/s}}$$
 $imes f_{i/A}\left(x_b,\mu_F
ight) f_{j/B}\left(x_t,\mu_F
ight) \sigma\left[ij
ightarrow car{c}X
ight]\left(x_bP_A,x_tP_B,\mu_F,\mu_R
ight)$ $x_F pprox x_b - x_t$

Energy dependency

- The relative importance of each process depends on the energy
 - More contribution from quarks at lower energy
 - 800 GeV (E866) →450 GeV (NA51) → 120 GeV (E906)
- SeaQuest is also probing a different kinematic region compared to previous experiment

Non-Relativistic QCD (NRQCD)

- The $c\bar{c}$ pairs production is calculated perturbatively
- The hadronization is described by the long-distance matrix elements (LDMEs), which depend on the color and spin of the $c\bar{c}$ pairs

• Relative weighting of the two processes depend on the choice of NRQCD p+p \rightarrow J/ ψ at E = 120GeV

LDMEs

$$\begin{split} \frac{d\sigma^H}{dx_F} &= \sum_{i,j=q,\bar{q},G} \int_0^1 dx_b dx_t \delta(x_F - x_b + x_t) \\ &\times f_{i/A}\left(x_b,\mu_F\right) f_{j/B}\left(x_t,\mu_F\right) \hat{\sigma} \left[ij \to H\right] \left(x_b P_A, x_t P_B, \mu_F, \mu_R, m_c\right) \\ \hat{\sigma} \left[ij \to H\right] &= \sum_n \underbrace{C^{ij}_{c\bar{c}[n]}\left(x_b P_A, x_t P_B, \mu_F, \mu_R, m_c\right)}_{\text{Production of}} \underbrace{\left\langle O^H_n \left[^{2S+1} L_J\right] \right\rangle}_{\text{LDMEs}} \end{split}$$

Obtaining J/ψ yield from mass spectrum

- Performing a component fit to the mass spectrum
- Use Monte Carlo to simulate signal events $(J/\psi, \psi', Drell-Yan)$
- Use mixed single-track events to simulate accidental background
- The mass spectrum for various x_F bins are also well described using this fitting procedure

Obtaining J/ψ yield from mass spectrum

• The p+d mass distribution is also well described using this fitting procedure

Obtaining the cross section

- The J/ψ yield is obtained from the mass spectrum
- The acceptance and efficiency correction is applied, which are obtained from Monte Carlo simulations
 Charmonium yield

$$B\frac{d\sigma}{dx_F} = \frac{N_{events}}{\Delta x_F \mathcal{L}\epsilon} \text{ from mass spectrum}$$
 Acceptance and efficiency correction
$$\mathcal{L} = N_A \rho \lambda \left(1 - e^{-L/\lambda}\right) N_{incident}$$

 The main sources of systematics comes from the background simulation and the beam luminosity

J/ψ absolute cross sections

- The measured cross section is compared with CEM prediction
- The normalization for the CEM calculation are adjusted to fit the data

J/ψ absolute cross sections

- The measured cross section is compared with NRQCD prediction
- The preliminary result is in reasonable agreement with NRQCD, including the overall magnitude

$J/\psi \, \sigma^{pd}/2\sigma^{pp}$ ratio vs x_F

- The measured ratio consistent with 1 within uncertainty
- The SeaQuest measurement covers a higher x_F region than previous measurements

M. C. Abreu et al, Physics Letters B **438**, 35 (1998). J.-C. Peng, Eur. Phys. J. A **18**, 395 (2003).

May 4, 2022

J/ψ and Drell-Yan $\sigma^{pd}/2\sigma^{pp}$ ratios vs x_t

- J/ψ ratio is closer to 1 compared to Drell-Yan
 - The Drell-Yan ratio is more sensitive to the flavor asymmetry
 - Contribution from gluon fusion in J/ψ production
 - The J/ψ data is at a region where \bar{d}/\bar{u} asymmetry is small
- The overall trend for both J/ψ and Drell-Yan are in reasonable agreement with calculation

ψ' production

- The LDMEs depend on the charmonium state
- The relative importance of each subprocess is different between J/ψ and ψ'
 - q ar q annihilation is the dominant contribution to ψ' at all x_F

ψ' production

- The LDMEs depend on the charmonium state
- The relative importance of each subprocess is different between J/ψ and ψ'
 - q ar q annihilation is the dominant contribution to ψ' at all x_F

Summary

- The preliminary p+p and $p+dJ/\psi$ cross section with $120{\rm GeV}$ beam is obtained and compared with NRQCD calculation
 - SeaQuest has provided new information at a lower energy and higher x_F compared to previous measurements
 - The measured absolute J/ψ cross section is in good agreement with NRQCD
- The preliminary $(p+d)/2(p+p)J/\psi$ cross section ratio is consistent with 1
 - The difference between the J/ψ ratio and the Drell-Yan ratio is reflecting the different mechanism between the different processes

Summary (cont.)

- NRQCD suggests the relative importance of $q\bar{q}$ annihilation and gluon fusion are different between J/ψ and ψ'
 - The extraction the of the ψ' cross section is currently underway
- The ongoing analysis of the remaining data will double the statistics for both Drell-Yan and J/ψ

SeaQuest Event Distribution

• The SeaQuest data covers the $x_F>0.4$ region for J/ψ and ψ'

$$\bullet \ x_F = \frac{2P_Z}{\sqrt{s}(1 - M^2/s)}$$

pd/pp J/ψ ratio E_{beam}=800GeV 1.2 E_{beam}=120GeV $E_{heam} = 120 GeV$ 1.1 $E_{beam} = 800 GeV$ 0.9 8.0 0.8 0.2

M. L. Mangano et al, Nuclear Physics B 405, 507 (1993). S. Dulat, et al, Phys. Rev. D 93, 033006 (2016).

- Calculated cross section ratio using CEM with CT14nlo at two different energy
- At lower energy, the deviation from unity is more significant as $q\bar{q}$ annihilation is more important

\bar{d}/\bar{u} extracted from SeaQuest

J/ψ and $\psi' \, \sigma^{pd}/2\sigma^{pp}$

