Complementarity of experimental and lattice QCD data on pion parton distributions

Patrick Barry¹, Colin Egerer¹, Joseph Karpie², Wally Melnitchouk¹, Chris Monahan^{1,3}, Kostas Orginos^{1,3}, Jianwei Qiu^{1,3}, David Richards¹, Nobuo Sato¹, Raza Sufian^{1,3}, Savvas Zafeiropoulos⁴

¹Jefferson Lab, ²Columbia University, ³College of William & Mary, ⁴Aix Marseilles Univ.

DIS 2022, Santiago de Compostela, May 5th, 2022

Based on a recent preprint: 2204.00543

Experiments to probe pion structure

Large momentum fraction behavior

- Many theoretical papers have studied the behavior of the valence quark distribution as $x \to 1$ and
- Debate whether $q_v^{\pi}(x \to 1) \sim (1-x)$ or $(1-x)^2$

```
R. J. Holt and C. D. Roberts, Rev. Mod. Phys. 82, 2991 (2010).
```

W. Melnitchouk, Eur. Phys. J. A 17, 223 (2003).

G. R. Farrar and D. R. Jackson, Phys. Rev. Lett. **43**, 246 (1979).

E. L. Berger and S. J. Brodsky, Phys. Rev. Lett. **42**, 940 (1979).

M. B. Hecht, C. D. Roberts, and S. M. Schmidt, Phys. Rev. C **63**, 025213 (2001).

Z. F. Ezawa, Nuovo Cimento A 23, 271 (1974).

P. V. Landshoff and J. C. Polkinghorne, Nucl. Phys. **B53**, 473 (1973).

J. F. Gunion, S. J. Brodsky, and R. Blankenbecler, Phys. Rev. D 8, 287 (1973).

T. Shigetani, K. Suzuki, and H. Toki, Phys. Lett. B **308**, 383 (1993).

A. Szczepaniak, C.-R. Ji, and S. R. Cotanch, Phys. Rev. D **49**, 3466 (1994).

R. M. Davidson and E. Ruiz Arriola, Phys. Lett. B **348**, 163 (1995).

S. Noguera and S. Scopetta, J. High Energy Phys. 11 (2015) 102.

P. T. P. Hutauruk, I. C. Cloët, and A. W. Thomas, Phys. Rev. C **94**, 035201 (2016).

T. J. Hobbs, Phys. Rev. D 97, 054028 (2018).

K. D. Bednar, I. C. Cloët, and P. C. Tandy, Phys. Rev. Lett. **124**, 042002 (2020).

G. de Téramond, T. Liu, R. S. Sufian, H. G. Dosch, S. J. Brodsky, and A. Deur, Phys. Rev. Lett. **120**, 182001 (2018).

J. Lan, C. Mondal, S. Jia, X. Zhao, and J. P. Vary, Phys. Rev. Lett. **122**, 172001 (2019).

J. Lan, C. Mondal, S. Jia, X. Zhao, and J. P. Vary, Phys. Rev. D **101**, 034024 (2020).

L. Chang, K. Raya, and X. Wang, Chin. Phys. C **44**, 114105 (2020).

A. Kock, Y. Liu, and I. Zahed, Phys. Rev. D **102**, 014039 (2020).

Z. F. Cui, M. Ding, F. Gao, K. Raya, D. Binosi, L. Chang, C. D. Roberts, J. Rodríguez-Quintero, and S. M. Schmidt, Eur. Phys. J. C **80**, 1064 (2020).

JAM analysis with threshold resummation

Lattice QCD Activity

Simulations on the lattice have been done to investigate this structure

Subset of pion lattice QCD analyses

```
J.-H. Zhang, J.-W. Chen, L. Jin, H.-W. Lin, A. Schäfer, and Y. Zhao, Phys. Rev. D 100,
034505 (2019), arXiv:1804.01483 [hep-lat].
```

Z.-Y. Fan, Y.-B. Yang, A. Anthony, H.-W. Lin, and K.-F. Liu, Phys. Rev. Lett. 121, 242001 (2018), arXiv:1808.02077 [hep-lat].

R. S. Sufian, J. Karpie, C. Egerer, K. Orginos, J.-W. Qiu, and D. G. Richards, Phys. Rev.
 D 99, 074507 (2019), arXiv:1901.03921 [hep-lat].

J.-W. Chen, H.-W. Lin, and J.-H. Zhang, Nucl. Phys. B **952**, 114940 (2020), arXiv:1904.12376 [hep-lat].

 $T.\ Izubuchi,\ L.\ Jin,\ C.\ Kallidonis,\ N.\ Karthik,\ S.\ Mukherjee,\ P.\ Petreczky,\ C.\ Shugert,\ \ and$

S. Syritsyn, Phys. Rev. D **100**, 034516 (2019), arXiv:1905.06349 [hep-lat].

B. Joó, J. Karpie, K. Orginos, A. V. Radyushkin, D. G. Richards, R. S. Sufian, and

S. Zafeiropoulos, Phys. Rev. D 100, 114512 (2019), arXiv:1909.08517 [hep-lat].

H.-W. Lin, J.-W. Chen, Z. Fan, J.-H. Zhang, and R. Zhang, Phys. Rev. D 103, 014516 (2021), arXiv:2003.14128 [hep-lat].

R. S. Sufian, C. Egerer, J. Karpie, R. G. Edwards, B. Joó, Y.-Q. Ma, K. Orginos, J.-W. Qiu, and D. G. Richards, Phys. Rev. D 102, 054508 (2020), arXiv:2001.04960 [hep-lat].

N. Karthik, Phys. Rev. D 103, 074512 (2021), arXiv:2101.02224 [hep-lat].

Z. Fan and H.-W. Lin, Phys. Lett. B 823, 136778 (2021), arXiv:2104.06372 [hep-lat].

How to relate PDFs with lattice observables?

 Make use of short distance factorization and appropriate matching coefficients

$$\Sigma_{n/h}(\nu, z^2) \equiv \langle h(p) | T\{\mathcal{O}_n(z)\} | h(p) \rangle$$

$$= \sum_i f_{i/h}(x, \mu^2) \otimes \mathcal{C}_{n/i}(x\nu, z^2, \mu^2)$$

$$+ \mathcal{O}(z^2 \Lambda_{\text{QCD}}^2)$$

 Structure just like experimental cross sections – good for global analysis

Reduced Ioffe time pseudo-distribution (Rp-ITD)

• Lorentz-invariant loffe time pseudo-distribution:

$$\mathcal{M}(
u,z^2) = rac{1}{2p^0} \, \langle p | \bar{\psi}(0) \gamma^0 | \mathcal{W}(z;0) \psi(z) | p
angle$$
 Quark and antiquark fields Gauge link

 $u = p \cdot z$

 $z = (0,0,0,z_3)$

Observable is the *reduced* loffe time pseudo-distribution (Rp-ITD)

$$\mathfrak{M}(
u,z^2)=rac{\mathcal{M}(
u,z^2)}{\mathcal{M}(0,z^2)}$$

Ratio cancels
UV divergences

Fitting the Data and Systematic Corrections

Valence quark distribution in pion

Re
$$\mathfrak{M}(\nu, z^2) = \int_0^1 dx \, q_v(x, \mu_{\text{lat}}) \mathcal{C}^{\text{Rp-ITD}}(x\nu, z^2, \mu_{\text{lat}})$$

Integration lower bound is 0

$$+\left[z^{2}B_{1}(\nu)\right]+\left[\frac{a}{|z|}P_{1}(\nu)\right]+\left[e^{-m_{\pi}(L-z)}F_{1}(\nu)\right]+\left[\dots\right]$$

Systematic corrections to parametrize

• $z^2B_1(v)$: power corrections

- $\frac{a}{|z|}P_1(v)$: lattice spacing errors
- $e^{-m_{\pi}(L-z)}F_1(\nu)$: finite volume corrections

Wilson coefficients for matching

Other potential systematic corrections the data is not sensitive to

Goodness of fit

- Scenario A: experimental data alone
- Scenario B: experimental + lattice, no systematics
- Scenario C: experimental + lattice, with systematics

			Scenario A		Scenario B		Scenario C	
			NLO	$+ \mathrm{NLL}_{\mathrm{DY}}$	NLO	$+\mathrm{NLL}_{\mathrm{DY}}$	NLO	$+\mathrm{NLL}_{\mathrm{DY}}$
Process	Experiment	$N_{ m dat}$	$\overline{\chi}^2$		$\overline{\chi}^2$		$\overline{\chi}^2$	
DY	E615	61	0.84	0.82	0.83	0.82	0.84	0.82
	$NA10 \ (194 \ \mathrm{GeV})$	36	0.53	0.53	0.52	0.54	0.51	0.53
	$NA10~(286~{\rm GeV})$	20	0.80	0.81	0.78	0.79	0.74	0.81
$\mathbf{L}\mathbf{N}$	H1	58	0.36	0.35	0.39	0.39	0.38	0.37
	ZEUS	50	1.56	1.48	1.62	1.69	1.59	1.62
Rp-ITD	a127m413L	18	_	-	1.04	1.06	1.05	1.04
	a127m413	8	_	_	1.98	2.63	1.00	1.18
Total		251	0.82	0.80	0.89	0.92	0.85	0.86

Agreement with the data

- Results from the full fit and isolating the leading twist term
- Difference between bands is the systematic correction

Resulting PDFs

- PDFs and relative uncertainties
- Including lattice reduces uncertainties
- NLO+NLL_{DY}
 changes a lot –
 unstable under
 new data

Effective β from $(1-x)^{\beta_{\text{eff}}}$

$$\beta_{\text{eff}}(x,\mu) = \frac{\partial \log |q_v(x,\mu)|}{\partial \log(1-x)}$$

Conclusions

- Including both lattice and experimental data sheds light on the pion PDF itself as well as systematics associated with the lattice
- Consistency between experimental and lattice data
- $1 \lesssim \beta_v^{\text{eff}} \lesssim 1.2$
- Performed analysis with current-current lattice QCD data too noisy to have a sizable impact
- Extensions to non-perturbative objects that are not well constrained by experiments could aided by lattice calculations

Backup Slides

Fitting only the p=1 points

- Most precise points, but not large range in loffe time
- Through analysis containing *only* lattice data, would not be sufficient to get a large x description of PDF

Resulting low-momentum PDFs

 These momentum points do entire job!

Quantifying individual systematic corrections on the lattice

Breaking down by the 3 systematics

$$z^2 B_1(\nu) + \frac{a}{|z|} P_1(\nu) + e^{-m_\pi(L-z)} F_1(\nu)$$

- Dominance of power or spacing corrections depends on z
- Finite volume corrections don't matter

