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Described	how	to	use	a	forward	modeling	for	analysis	of	the	data:	

Define	pdfs	->	apply	radiative	effects		
				->	predict	cross	sections	
				->	apply	detector/analysis	effects	
				->	calculate	expected	number	of	events	
				->	calculate	a	Poisson	probability

We	are	now	developing	a	PDF	fitting	package	to	implement	this	scheme

Primary	author:	Ritu	Aggarwal
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Reconstructed	variables/bins

generated	variables/bins.	

Separate	transfer	matrices	
exist	for	producing	radiative	
cross	sections	and	detector/
analysis	effects.

transfer	matrix

Developed	by	R.	Aggarwal
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Procedure

-	PDFs	defined	at	a	high	scale:	 	in	the	Fixed	Flavor	number	scheme	(5	quarks)	

-	PDFs	are	evolved	at	NNLO	using	QCDNUM	to	cover	the	full	range	of	the	data	

-	Structure	functions	are	computed	with	QCDNUM	and	represented	by	cubic	splines.	These	are	
then	used		to	form	the	differential	cross	section,	which	is	also	splined.		This	allows	for	a	fast	
integration	of	the	cross	sections.	

- The	predictions	at	the	observed	level	are	then	calculated	using	the	transfer	matrices	

Q2
0 = 100 GeV2

β′�s

νj = (1 + 0.018 ⋅ β+−
0 )[∑

i

νi ⋅ (aij + ∑
k

βkδk
ij)]

normalization	uncertainty

expected	counts	at	generator	level

transfer	matrix systematic	variations

are	Unit	Normal	distributed	nuisance	parameters

The	probability	of	observing	the	data	is	then	calculated	using	the	Poisson	distribution
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QCDNUM/SPLINT

Michiel	Botje
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QCDNUM/SPLINT

Michiel	Botje

The	speedup	is	almost	three	orders	of	magnitude	compared	to	initial	attempts	using	standard	
numerical	integration	techniques	with	relative	accuracy	better	than	 	

Allows	to	run	MCMC	chain	with	many	iterations	in	reasonable	time.	

QCDNUM	written	in	Fortran,	with	a	C++	interface.	A	QCDNUM	interface	to	the	Julia	
programming	language	is	now	also	available.	

The	BAT.jl	package	is	written	in	the	Julia	Programming	language.	
Interfacing	to	MCMC	package	and	development	of	PDF	fitting	code	->	Francesca	Capel

5 ⋅ 10−4
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,	Hamiltonian	MC,	Nested	Sampling

Project	lead	&	primary	author:	Oliver	Schulz

(among	other	things)
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A	first	try

Q2
0 = 100 GeV2 ∑

i
∫

1

0
xfi(x)dx = ∑

i

Δi = 1

∫
1

0
u(x) − ū(x)dx = 2 ∫

1

0
d(x) − d̄(x)dx = 1 ∫

1

0
f (x) − f̄ (x)dx = 0

xuV(x) = xu(x) − xū(x) = Auxλu(1 − x)Ku

xdV(x) = xd(x) − xd̄(x) = Adxλd(1 − x)Kd

xū(x) = Aūxλq(1 − x)Kq

xd̄(x) = Ad̄ xλq(1 − x)Kq

xs(x) = xs̄(x) = Asxλq(1 − x)Kq

xc(x) = xc̄(x) = Acxλq(1 − x)Kq

xb(x) = xb̄(x) = Abxλq(1 − x)Kq

xg(x) = Ag1xλg1(1 − x)Kg + Ag2xλg2(1 − x)Kq

Densities	&	evolution	in	FFN	(5)	
scheme	&	NNLO

Fit	parameters	are	
	+	 	

	are	nuisance	parameters	(systematics)	
	(pdf	zero	as	 )	

2	free	parameters	for	data	normalization

Δi′�s, Ku, Kd, λg1, λg2, Kg, λq β

β
Kq = 5 fixed x → 1

Parametrizations

f ≠ u, d, g
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A	first	try

xuV(x) = xu(x) − xū(x) = Auxλu(1 − x)Ku

xdV(x) = xd(x) − x d̄(x) = Ad xλd(1 − x)Kd

xū(x) = Aūxλq(1 − x)Kq̄

x d̄(x) = Ad̄ xλq(1 − x)Kq̄

xs(x) = x s̄(x) = Asxλq(1 − x)Kq̄

xc(x) = xc̄(x) = Acxλq(1 − x)Kq̄

xb(x) = xb̄(x) = Abxλq(1 − x)Kq̄

xg(x) = Ag1xλg1(1 − x)Kg + Ag2xλg2(1 − x)Kq̄ Input	values

Parametrizations

Q2
0 = 100 GeV2

Δ′�s randomly	generated	from	prior
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A	first	try
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transfer	matrix	used	to	get	expected	
numbers	of	events	in	bins	of	observed	
quantities.	

Poisson	generated	number	of	events.

QCDNUM	evolves	PDFs	to	cover	grid:	

SPLINT	package	gives	integrated	cross	
sections	in	bins
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A	first	try

Priors

				 	=	Dirichlet([6.,	3.,	9.,	4.,	2.,1.,	0.2,	0.2,	0.1]),	
				 =	Uniform(3.,	9.),	
				 =	Uniform(3.,	9.),	
			 	=	Uniform(1.,	2.),	
			 =	Uniform(-0.5,	-0.1),	
				 =		Uniform(3.,	9.),	
				 	=	Uniform(-0.5,	-0.1),	
				 	=		Truncated(Normal(0,	1),	-5,	5),	
				 =		Truncated(Normal(0,	1),	-5,	5),

Δ
Ku
Kd
λg1
λg2
Kg
λq
β+

0
β−

0

up	valence

down	valence

gluon	valence

Markov	Chain	MC	used	to	fit	simulated	data	with	BAT.jl	

Some	results	…	
Fitting	code:	F.	Capel	implemented	fitting	model,	BAT.jl	O.	Schulz	et	al.)

P(Δ, Ku, Kd, λg1, λg2, Kg, λq |D) ∝ P(D |Δ, Ku, Kd, λg1, λg2, Kg, λq)P0(Δ, Ku, Kd, λg1, λg2, Kg, λq)

Δi

P0(Δi)

Some	of	the	Δ′�s
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MCMC	Output

Output	is .	
BAT.jl	outputs	all	1,2D	marginalized	distributions.			A	small	subset	of	possible	plots.

{Δ, Ku, Kd, λg1, λg2, Kg, λq, β} distributed ∝ P(Δ, Ku, Kd, λg1, λg2, Kg, λq, β |D)
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Data/Model	Posterior	Check

Predictions	for	event	numbers	from	posterior	parameter	sets
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Momenta
Up-valence Down-valence

Glue-valence Glue-sea

truth

prior
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Shape	Parameters

gluon	valencedown	valence

up	valence

Shape	(and	momentum)	of	up-valence	well	constrained.		Others	weakly	constrained.
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Shape	Parameters

gluon	sea

quark	sea

weakly	informative	data	on	the	sea	distributions
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Parton	Densities

Up	Valence Down	Valence

Gluon
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• ZEUS	high-x	data	unique,	but	not	used	in	PDF	fits	

• a	transfer	matrix	formulation	makes	it	possible	to	compare	PDF	set	predictions	to	the	ZEUS	

high-x	data	directly	and	calculate	probabilities	

• Forward	modeling	developed	to	extract	information	on	PDFs	from	this	data	set	

• First	tests	indicate	that	up-valence	can	be	well	constrained	(momentum	fraction	and	shape)	

• Application	to	real	data	soon

Summary

QCDNUM code: https://github.com/cescalara/QCDNUM.jl
PDF fitting code: https://github.com/cescalara/PartonDensity.jl

https://github.com/cescalara/QCDNUM.jl
https://github.com/cescalara/PartonDensity.jl
https://github.com/cescalara/QCDNUM.jl
https://github.com/cescalara/PartonDensity.jl
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BACKUP



Motivation

	Information	on	the	very	high	x	behavior	of	the	parton	densities	in	the	
DGLAP	validity	regime	is	primarily	theoretical	and	assumption-based.

BCDMS	has	measured	F2	up	to	
x=0.75	

The	combined	H1,	ZEUS	results	
are	up	to	x=0.65	

ZEUS	has	measured	up	to	x=1,	
but	these	data	are	not	(yet)	
included	in	PDF	fits.
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Motivation
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Sizable	differences	in	expectations	(much	bigger	than	quoted	
uncertainties)	despite	the	fact	that	fits	typically	use	similar	
parametrization		xq∝(1-x)η.		Is	it	possible	to	improve	this	situation	?


