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Towards 1% PDFs theoretical uncertainties
[Juan Rojo, Monday]

Global fit → methodology matters
[Roy Stegeman, Tuesday]

DIS module YADSIM [Felix Hekhorn,
Wednesday; talks by Jun Gao]

Global fit → DIS module → VFNS (ACOT,
FONLL,etc) → heavy flavor mass effects

Heavy flavor mass effects → Collins, ACOT,
Forte, Ball, etc.

Most of the structure functions are computed
at α2

S

Not all matching coefficients are computed at
α2
s

Charm in the Proton
[Giacomo Magni, poster]
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Intrinsic Structure Functions and Matching Coefficients

Structure functions of DIS of virtual W− boson on quark c with mass m
producing massless quark s do not exist in the literature.

W−(p1) + c(p2) → s(p3) + X ,

p2
1 = Q2, p2

2 = m2, p2
3 = 0.

Q2

0

m2

Reference tree-level partonic diagram of
the process we study.

Since, the computations are fully analytic, these structure functions can be
used to derive at the moment unknown intrinsic matching

functions/coefficients [talk: YADISM, Felix Hekhorn], [R. Ball, M. Bonvini,
L. Rottoli, 2015;S. Forte, E. Laenen, P. Nason and J. Rojo, 2010]
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Structure Functions: Standard Formulae

Massive Factorization [J.C. Collins,1998]

Ωµν =

∫
dξ

ξ
ωµνQ(ξ, µ2)

∣∣∣∣
p+=ξP+

DIS of virtual W− boson on quark c
with mass m producing massless
quark s.

W−

s

c

Tensor decomposition and normalization [S. Kretzer, I. Schienbein,1998]

ωµν
X = −ωQ

1,Xg
µν + ωQ

2,Xp
µpν

+ iωQ
3,X ε

µν
αβp

αqβ + ωQ
4,Xq

µqν

+ ωQ
5,X (qµpν + qνpµ) ,

FX
i =

∫
dξ

ξ
fiQ(ξ)

∫
dΠX−LIPSω

Q
i,X

fi is normalization from
Ref. [S. Kretzer, I. Schienbein,1998]

Fi = Fi,0 + Fi,NLO + Fi,NNLO +O(α3
s )

Fi,0 = tree,Fi,NLO = FR
i + FV

i ,Fi,NNLO = FRR
i + FRV

i + FVV
i
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Structure Functions @ NLO
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Comparison of the structure function F2

as implemented in APFEL and YADISM.
Regards Alex & Felix
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Expanding in a small parameter.
“Intrinsic” contribution only. Regards
Alex & Felix.

F c
2 is defined in FONLL [Ball,

Bonvini, Rottoli]

dummy PDFs

Q2 = 4GeV2

effect 2− 5% in the soft region

Correct soft behavior

Q2 = 10GeV2

charm-mass “effects” O(1%).

{FNLO
i } are implemented in

YADISM
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Structure Functions @ NNLO: general remarks

Fi,NNLO = FRR
i + FRV

i + FVV
i FX

i =

∫
dξ

ξ
fiQ(ξ)F̂ (ξ, . . .),

F̂i,X (ξ, . . .) =

∫
dΠX−LIPSω

Q
i,X

We use the “canonical” method to evaluate NNLO corrections, i.e.

Feynman Amplitudes M are generated in QGRAF [P. Nogueira,1993]

All possible “algebras” (Clifford, Color,etc.) are implemented in FORM

[J. A. M. Vermaseren , 2000] to compute ωµν
X .

We written a procedure to handle traces that involve γ5 based on
[D. Kreimer, 1989; Körner, Kreimer and Schilcher, 1991.]

F̂i,X takes the form

F̂i,X =
∑
k

Ck({sij}; d = 4− 2ϵ) · Ik ,

where Ck is a rational coefficient and Ik is scalar Feynman integral.

IBPs 0 =
∫
ddp ∂

∂p
f (p, . . .) [K. Chetyrkin,F.V. Tkachov, 1981]; we use

REDUZE2 [Manteuffel, Studerus,2012]
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Structure Functions @ NNLO: Pure Virtual Case

fam1 fam2

D1 (L1 − p2)
2 L2

2

D2 (L2 + p1)
2 (L1 − p2)

2

D3 L2
1 −m2 (L2 + p1)

2

D4 (L1 + p1)
2 L2

1 −m2

D5 (L2 − p2)
2 (L1 + p1)

2

D6 (L1 − L2)
2 (L2 − p2)

2 −m2

D7 (L1 − L2 − p1)
2 −m2 (L1 − L2)

2 −m2

p1

p2

s = (p1+p2)
2, p2

1 = Q2, p2
2 = m2

Dimension regularization
d → 4− 2ϵ

IBPs → 18 master
integrals

one-scale problem

y = m2

−Q2

“Finite” integrals

IVV(a1, a2, . . . , a7; {y , ϵ}) =∫
ddL1

i(π)d/2
ddL2

i(π)d/2
1

Da1
1 · Da2

2 · · ·Da7
7

7



Structure Functions @ NNLO: Finite Integrals

Dimensional recurrence relations [O.V.Tarasov,1997]

I d−2
i,VV(y ; ϵ) =

∑
k

Bk(y ; ϵ)I
d
k,VV(y ; ϵ),

Finite Integrals [E. Panzer, 2014; Manteuffel, Panzer, Schabinger, 2014]

Rising powers (dots) of propagators → “remove” UV-ϵ divergences

Shifting dimensions to higher ones → “remove” IR-ϵ divergences

A “proper” choice of dots and dim. shifts → a finite integral ϵ → 0.

Linearly reducible integrals with HyperInt [E. Panzer,2014]

Ifinite(y ; ϵ) ∝
∫ ∞

0

dx1 . . .

∫ ∞

0

dxNδ
(∑

xk − 1
)∏

k

xak−1
k Ua−3/2dF d−2

= C0(y) + ϵC1(y) + ϵ2C2(y) + . . . ,

{Ci} are linearly reducible → can be expressed in terms of multiple
polylogarithm (discussed later).
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Real-Virtual Corrections: Preliminaries

p1 p2

p2 p1

An example of a real-virtual diagram.

Kinematic invariants

s = (p1 + p2)
2,

p2
1 = Q2 < 0,

p2
2 = m2.

Preliminary dimensionless
variables

x =
s

−Q2
≥ 0, y =

m2

−Q2
≥ 0.

Reverse unitarity [Anastasiou,Melnikov]

I =

∫
ddL1d

dL2

iπd/2

δ+
[
L2
2

]
δ+

[
(p1 + p2 − L2)

2
]

Da1
1 Da2

2 Da3
3 Da4

4 Da4
5

Cutkosky rules

2iπδ
(
p2 −m2

)
→ 1

p2 −m2 + i0
− 1

p2 −m2 − i0

we can treat RV integrals in the same way as
pure virtual ones (e.g. find IBP identities)
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Real-Virtual Corrections: Preliminaries

fam1 fam2 fam3

D1,c L2
2 L2

2 L2
2

D2,c (p1 + p2 − L2)
2 (p1 + p2 − L2)

2 (p1 + p2 − L2)
2

D3 (L1 + p1)
2 (L1 + p1)

2 L2
1

D4 (L1− p2) (L1− p2) (L2 − p2)
2 −m2

D5 L2
1 −m2 L2

1 −m2 (L1 + p1)
2 −m2

D6 (L2 − p2)
2 −m2 (L2 − p2)

2 −m2 (L1 − L2 + p1)
2 −m2

D7 (L1 + L2 − p2)
2 (L1 − L2 + p1)

2 (L1 − L2 + p1 + p2)2

21 master integrals

2-variables problem

We solve RV and RR integrals with differential equations method. However, we
consider only RV integrals in this talk.
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Method of Differential Equasions

[A.V. Kotikov,1991]

Example: massive bubble. Dimensionless variable here µ = m2

p2

∂µ =
IBP
=

− 2ε− 1

2(µ+ 1)
· +

2(ε− 1)

µ(µ+ 1)
·

Canonical system of differential equations [J.M. Henn, 2013]

In our case we have two systems of 21 diff.eqs. each.

∂x j⃗ = M̂x({x , y}; ϵ) · j⃗

∂y j⃗ = M̂y ({x , y}; ϵ) · j⃗

Bringing diff. eqs. systems to canonical form

j⃗ = T̂ J⃗, ϵŜx = T̂−1(M̂x T̂ + ∂x T̂ ) → ∂x J⃗ = ϵSx({x , y})J⃗

An algorithm to find transformation T̂ was proposed by Roman Lee, and it was
implemented in various programs. For reference, we use package LIBRA

[R. Lee, 2021] 11



Iterated Integrals

Consider a simple example

∂x J⃗ =
ϵÂ

x − 1
· J⃗,

where A is some upper-triangular rational matrix. Choosing some
parametrization, i.e. γ : [0, 1] → M : x ∈ M, we can rewrite diff.eqs in Pfaffian
form

dJ⃗ = ϵÂ d log(W ) · J⃗,

γ−1(d log(W )) = dt
d log(f (t)− 1)

dt

where γ−1 is pull-back of one form d log(W ).
The solution of Pfaffian system → Picard-iteration → iterated integrals

J⃗(x) = T (x , x0)J⃗(x0),

T (x , x0) = Î +
∑
n≥1

∫
x0≤t1≤...≤tn≤x

B(tn)B(tn−1) . . .B(t1)dt1 . . .dtn,

where B(t) = ϵd log(f (t)−1)
dt
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Iterated Integrals and Uniformly Transcendental Form of Solutions

Iterated integrals with kernels of the type

B(t) ∝ 1

t − a

are well-known the literature! These are so-called Goncharovs
(hyperlogarithms) polylogarithms (GPLs) [A.B. Goncharov, 2001]

G(a1, . . . , an; x) =

∫ x

0

dt

t − a1
◦ dt

t − a2
◦ . . . ◦ dt

t − an
,

G(01, . . . , 0n; x) = lim
ε→0

Regε

∫ x

ε

(
dt

t

)◦n

=
1

n!
logn(x).

Goncharov polylogarithms (and iterated integrals), Riemann zeta functions, π
constant all have a property called ”transcendental weight” w(f ) = n : n ∈ Z

w(π) → 1,w(G(a1, a2; x)) → 2,w(ζ(3)) → 3, etc.

Uniformly transcendental (UT) functions

Ji = Ci,0 + ϵCi,1 + ϵ2Ci,2 + . . . ,

where w(ϵn) = −n, therefore UT-functions are function of zero transcendental
weight.
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Workflow

Algebraic change of variables is needed to remove square roots

x → 1− ξ

ξ
(1− χ2ξ)

y → −χ2

First solve ξ-equations asymptotically in the limit ξ → 1 (soft limit)
[R. Lee, A. Smirnov, V. Smirnov, 2017; KK, K. Melnikov, C. Wever, 2016]

ji =
∑
j,k,l

ci,j,k,l(χ)(1− ξ)j−kϵ logl(1− ξ) +O((1− ξ))

We use asymptotic solutions to fix boundary conditions of exact ξ
differential equations in the ξ → 1&χ → 0 limits.

We find all boundary conditions by means of known methods, e.g. method
of regions [Beneke, Smirnov, Jantzen], and Mellin-Barnes expansion [Boos,
Davydychev,Tausk, Smirnov, Czakon]

all boundary conditions are brought to UT form with known methods.
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Workflow

Thanks to LIBRA, we find transformation T̂ and obtain ϵ-form of
differential equations.

After many judicious transformations we obtain

dJ⃗ = ϵ
6∑

k=1

B̂kd log(Wk) · J⃗

Our “alphabet” consist of following “letters”

{Wk} = {ξ, 1− ξ, 1− χ2ξ2, 1− χ2ξ, 1 + χ2(−2 + ξ)ξ, 1 + χ2(ξ − 1)ξ}

Iterated Integrals instead of Goncharov’s polylogarithms

Remember that integration kernels has a particular form, i.e. 1
t−1

Our kernels
are not of this form. We can force such a form by rationalizing some algebraic
“letters”.
We avoid this by using instead a formal definition of iterated integrals with
general “letters” [Badger, Hartanto, et al., 2021]! Finally, iterated integrals can
be evaluated in GiNaC [Walden, Weinzierl, 2021].
This way, we integrate our integrals up to O(ϵ6).
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A Few Words About Double-Real Corrections

Double-Real: massless final states

2 2

I =

∫
ddL1d

dL2δ
+
[
(P − L1 − L2)

2
]

×
δ+

[
L2
1

]
δ+

[
L2
2

]
Da1

1 Da2
2 Da3

3 Da4
4

All 24 integrals are formally done!

Double-Real: massive final
states

2

I =

∫
ddL1d

dL2δ
+
[
L2
2 −m2

]
×

δ+
[
L2
1 −m2

]
δ+

[
(P − L1 − L2)

2
]

Da1
1 Da2

2 Da3
3 Da4

4

There are yet 12 master integrals
to compute.
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Instead of Conclusions

We report our progress on the calculations of next-to-next-to leading order
correction to intrinsic structure functions

We computed pure virtual, real-virtual, and partially double-real
corrections.

“wish list”

The last missing contribution to charm structure functions

This ingredient can be used to derive the last PDF matching coefficient at
NNLO.

It will be nice to perform a comparison of our FONLL against full ACOT
at NNLO.
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