Intrinsic Charged-Current DIS at NNLO QCD

Kirill Kudashkin

University of Milan

KK is supported by the European Research Council under the EuropeanUnion's Horizon 2020 research and innovation Programme (grant agreement n.740006)

- Towards 1\% PDFs theoretical uncertainties [Juan Rojo, Monday]
- Global fit \rightarrow methodology matters [Roy Stegeman, Tuesday]
- DIS module YADSIM [Felix Hekhorn, Wednesday; talks by Jun Gao]
- Global fit \rightarrow DIS module \rightarrow VFNS (ACOT, FONLL,etc) \rightarrow heavy flavor mass effects
- Heavy flavor mass effects \rightarrow Collins, ACOT, Forte, Ball, etc.
- Most of the structure functions are computed at α_{S}^{2}
- Not all matching coefficients are computed at α_{s}^{2}

Charm in the Proton
[Giacomo Magni, poster]

Intrinsic Structure Functions and Matching Coefficients

Structure functions of DIS of virtual W^{-}boson on quark c with mass m producing massless quark s do not exist in the literature.

$$
\begin{aligned}
& W^{-}\left(p_{1}\right)+c\left(p_{2}\right) \rightarrow s\left(p_{3}\right)+X \\
& p_{1}^{2}=Q^{2}, p_{2}^{2}=m^{2}, p_{3}^{2}=0
\end{aligned}
$$

Reference tree-level partonic diagram of the process we study.

Since, the computations are fully analytic, these structure functions can be used to derive at the moment unknown intrinsic matching functions/coefficients [talk: YADISM, Felix Hekhorn], [R. Ball, M. Bonvini,
L. Rottoli, 2015;S. Forte, E. Laenen, P. Nason and J. Rojo, 2010]

Structure Functions: Standard Formulae

Massive Factorization

$$
\Omega^{\mu \nu}=\left.\int \frac{\mathrm{d} \xi}{\xi} \omega^{\mu \nu} Q\left(\xi, \mu^{2}\right)\right|_{p_{+}=\xi P_{+}}
$$

DIS of virtual W^{-}boson on quark c with mass m producing massless quark s.

Tensor decomposition and normalization

$$
\begin{aligned}
& \omega_{X}^{\mu \nu}=-\omega_{1, x}^{Q} g^{\mu \nu}+\omega_{2, X}^{Q} p^{\mu} p^{\nu} \\
& +i \omega_{3, X}^{Q} \varepsilon_{\alpha \beta}^{\mu \nu} p^{\alpha} q^{\beta}+\omega_{4, X}^{Q} q^{\mu} q^{\nu} \\
& +\omega_{5, X}^{Q}\left(q^{\mu} p^{\nu}+q^{\nu} p^{\mu}\right),
\end{aligned}
$$

$F_{i}^{X}=\int \frac{\mathrm{d} \xi}{\xi} f_{i} Q(\xi) \int \mathrm{d} \Pi_{X-\operatorname{LIPS}} \omega_{i, X}^{Q}$
f_{i} is normalization from
Ref. [S. Kretzer, I. Schienbein,1998]

$$
\begin{aligned}
& F_{i}=F_{i, 0}+F_{i, \mathrm{NLO}}+F_{i, \mathrm{NNLO}}+\mathcal{O}\left(\alpha_{s}^{3}\right) \\
& F_{i, 0}=\operatorname{tree}, F_{i, \mathrm{NLO}}=F_{i}^{\mathrm{R}}+F_{i}^{\mathrm{V}}, F_{i, \mathrm{NNLO}}=F_{i}^{\mathrm{RR}}+F_{i}^{\mathrm{RV}}+F_{i}^{\mathrm{VV}}
\end{aligned}
$$

Structure Functions © NLO

$F_{2}^{c}\left(x, Q^{2}\right)$

Comparison of the structure function F_{2} as implemented in APFEL and YADISM. Regards Alex \& Felix

- F_{2}^{c} is defined in FONLL [Ball, Bonvini, Rottoli]
- dummy PDFs
- $Q^{2}=4 \mathrm{GeV}^{2}$
- effect $2-5 \%$ in the soft region
- Correct soft behavior
$F_{2}^{c}\left(x, Q^{2}\right)$

Expanding in a small parameter.
"Intrinsic" contribution only. Regards Alex \& Felix.

- $Q^{2}=10 \mathrm{GeV}^{2}$
- charm-mass "effects" $\mathcal{O}(1 \%)$.
- $\left\{F_{i}^{\mathrm{NLO}}\right\}$ are implemented in YADISM

Structure Functions @ NNLO: general remarks

$$
\begin{aligned}
F_{i, \mathrm{NNLO}}=F_{i}^{\mathrm{RR}}+F_{i}^{\mathrm{RV}}+F_{i}^{\mathrm{VV}} & F_{i}^{X}=\int \frac{\mathrm{d} \xi}{\xi} f_{i} Q(\xi) \hat{F}(\xi, \ldots) \\
& \hat{F}_{i, x}(\xi, \ldots)=\int \mathrm{d} \Pi_{x-\operatorname{LIPS}} \omega_{i, X}^{Q}
\end{aligned}
$$

We use the "canonical" method to evaluate NNLO corrections, i.e.

- Feynman Amplitudes \mathcal{M} are generated in QGRAF [P. Nogueira,1993]
- All possible "algebras" (Clifford, Color,etc.) are implemented in FORM [J. A. M. Vermaseren , 2000] to compute $\omega_{X}^{\mu \nu}$.
- We written a procedure to handle traces that involve γ_{5} based on [D. Kreimer, 1989; Körner, Kreimer and Schilcher, 1991.]
- $\hat{F}_{i, X}$ takes the form

$$
\hat{F}_{i, X}=\sum_{k} C_{k}\left(\left\{s_{i j}\right\} ; d=4-2 \epsilon\right) \cdot I_{k}
$$

where C_{k} is a rational coefficient and I_{k} is scalar Feynman integral.

- IBPs $0=\int \mathrm{d}^{d} p \frac{\partial}{\partial p} f(p, \ldots)$ [K. Chetyrkin,F.V. Tkachov, 1981]; we use REDUZE2 [Manteuffel, Studerus, 2012]

Structure Functions @ NNLO: Pure Virtual Case

	fam1	fam2
D_{1}	$\left(L_{1}-p_{2}\right)^{2}$	L_{2}^{2}
D_{2}	$\left(L_{2}+p_{1}\right)^{2}$	$\left(L_{1}-p_{2}\right)^{2}$
D_{3}	$L_{1}^{2}-m^{2}$	$\left(L_{2}+p_{1}\right)^{2}$
D_{4}	$\left(L_{1}+p_{1}\right)^{2}$	$L_{1}^{2}-m^{2}$
D_{5}	$\left(L_{2}-p_{2}\right)^{2}$	$\left(L_{1}+p_{1}\right)^{2}$
D_{6}	$\left(L_{1}-L_{2}\right)^{2}$	$\left(L_{2}-p_{2}\right)^{2}-m^{2}$
D_{7}	$\left(L_{1}-L_{2}-p_{1}\right)^{2}-m^{2}$	$\left(L_{1}-L_{2}\right)^{2}-m^{2}$

$$
s=\left(p_{1}+p_{2}\right)^{2}, p_{1}^{2}=Q^{2}, p_{2}^{2}=m^{2}
$$

- Dimension regularization $d \rightarrow 4-2 \epsilon$
- IBPs $\rightarrow 18$ master integrals

$$
\begin{aligned}
& I_{\mathrm{VV}}\left(a_{1}, a_{2}, \ldots, a_{7} ;\{y, \epsilon\}\right)= \\
& \int \frac{\mathrm{d}^{d} L_{1}}{\mathrm{i}(\pi)^{d / 2}} \frac{\mathrm{~d}^{d} L_{2}}{\mathrm{i}(\pi)^{d / 2}} \frac{1}{D_{1}^{a_{1}} \cdot D_{2}^{a_{2}} \cdots D_{7}^{a_{7}}}
\end{aligned}
$$

- one-scale problem

$$
y=\frac{m^{2}}{-Q^{2}}
$$

- "Finite" integrals

Structure Functions @ NNLO: Finite Integrals

Dimensional recurrence relations

$$
I_{i, \mathrm{VV}}^{d-2}(y ; \epsilon)=\sum_{k} B_{k}(y ; \epsilon) I_{k, \mathrm{VV}}^{d}(y ; \epsilon),
$$

Finite Integrals

- Rising powers (dots) of propagators \rightarrow "remove" UV- ϵ divergences
- Shifting dimensions to higher ones \rightarrow "remove" IR- ϵ divergences
- A "proper" choice of dots and dim. shifts \rightarrow a finite integral $\epsilon \rightarrow 0$.

Linearly reducible integrals with HyperInt

$$
\begin{aligned}
I^{\text {finite }}(y ; \epsilon) & \propto \int_{0}^{\infty} \mathrm{d} x_{1} \ldots \int_{0}^{\infty} \mathrm{dx}_{\mathrm{N}} \delta\left(\sum x_{k}-1\right) \prod_{k} x_{k}^{a_{k}-1} U^{a-3 / 2 d} F^{d-2} \\
& =C_{0}(y)+\epsilon C_{1}(y)+\epsilon^{2} C_{2}(y)+\ldots
\end{aligned}
$$

$\left\{C_{i}\right\}$ are linearly reducible \rightarrow can be expressed in terms of multiple polylogarithm (discussed later).

Real-Virtual Corrections: Preliminaries

An example of a real-virtual diagram.

Kinematic invariants

$$
\begin{aligned}
& s=\left(p_{1}+p_{2}\right)^{2}, \\
& p_{1}^{2}=Q^{2}<0 \\
& p_{2}^{2}=m^{2}
\end{aligned}
$$

Preliminary dimensionless variables
$x=\frac{s}{-Q^{2}} \geq 0, y=\frac{m^{2}}{-Q^{2}} \geq 0$.

Reverse unitarity

$$
I=\int \frac{\mathrm{d}^{d} L_{1} \mathrm{~d}^{d} L_{2}}{\mathrm{i} \pi^{d / 2}} \frac{\delta^{+}\left[L_{2}^{2}\right] \delta^{+}\left[\left(p_{1}+p_{2}-L_{2}\right)^{2}\right]}{D_{1}^{a_{1}} D_{2}^{a_{2}} D_{3}^{a_{3}} D_{4}^{a_{4}} D_{5}^{a_{4}}}
$$

Cutkosky rules
$2 i \pi \delta\left(p^{2}-m^{2}\right) \rightarrow \frac{1}{p^{2}-m^{2}+i 0}-\frac{1}{p^{2}-m^{2}-i 0}$
we can treat RV integrals in the same way as pure virtual ones (e.g. find IBP identities)

Real-Virtual Corrections: Preliminaries

	fam1	fam2	fam3
$D_{1, c}$	L_{2}^{2}	L_{2}^{2}	L_{2}^{2}
$D_{2, c}$	$\left(p_{1}+p_{2}-L_{2}\right)^{2}$	$\left(p_{1}+p_{2}-L_{2}\right)^{2}$	$\left(p_{1}+p_{2}-L_{2}\right)^{2}$
D_{3}	$\left(L_{1}+p_{1}\right)^{2}$	$\left(L_{1}+p_{1}\right)^{2}$	L_{1}^{2}
D_{4}	$\left(L 1-p_{2}\right)$	$\left(L 1-p_{2}\right)$	$\left(L_{2}-p_{2}\right)^{2}-m^{2}$
D_{5}	$L_{1}^{2}-m^{2}$	$L_{1}^{2}-m^{2}$	$\left(L_{1}+p_{1}\right)^{2}-m^{2}$
D_{6}	$\left(L_{2}-p_{2}\right)^{2}-m^{2}$	$\left(L_{2}-p_{2}\right)^{2}-m^{2}$	$\left(L_{1}-L 2+p_{1}\right)^{2}-m^{2}$
D_{7}	$\left(L_{1}+L_{2}-p_{2}\right)^{2}$	$\left(L_{1}-L_{2}+p_{1}\right)^{2}$	$\left(L_{1}-L_{2}+p_{1}+p^{2}\right)^{2}$

- 21 master integrals
- 2-variables problem

We solve RV and RR integrals with differential equations method. However, we consider only RV integrals in this talk.

Method of Differential Equasions

Example: massive bubble. Dimensionless variable here $\mu=\frac{m^{2}}{p^{2}}$

Canonical system of differential equations

In our case we have two systems of 21 diff.eqs. each.

$$
\begin{aligned}
& \partial_{x} \vec{j}=\hat{M}_{x}(\{x, y\} ; \epsilon) \cdot \vec{j} \\
& \partial_{y} \vec{j}=\hat{M}_{y}(\{x, y\} ; \epsilon) \cdot \vec{j}
\end{aligned}
$$

Bringing diff. eqs. systems to canonical form

$$
\vec{j}=\hat{T} \vec{J}, \quad \epsilon \hat{S}_{x}=\hat{T}^{-1}\left(\hat{M}_{x} \hat{T}+\partial_{x} \hat{T}\right) \rightarrow \partial_{x} \vec{J}=\epsilon S_{x}(\{x, y\}) \vec{J}
$$

An algorithm to find transformation \hat{T} was proposed by Roman Lee, and it was implemented in various programs. For reference, we use package LIBRA
[R. Lee, 2021]

Iterated Integrals

Consider a simple example

$$
\partial_{x} \vec{J}=\frac{\epsilon \hat{A}}{x-1} \cdot \vec{J},
$$

where A is some upper-triangular rational matrix. Choosing some parametrization, i.e. $\gamma:[0,1] \rightarrow M: x \in M$, we can rewrite diff.eqs in Pfaffian form

$$
\begin{aligned}
& \mathbf{d} \vec{J}=\epsilon \hat{A} \mathbf{d} \log (W) \cdot \vec{J}, \\
& \gamma^{-1}(\mathbf{d} \log (W))=\mathrm{d} t \frac{\mathrm{~d} \log (f(t)-1)}{\mathrm{d} t}
\end{aligned}
$$

where γ^{-1} is pull-back of one form $\mathbf{d} \log (W)$.
The solution of Pfaffian system \rightarrow Picard-iteration \rightarrow iterated integrals

$$
\begin{aligned}
& \vec{J}(x)=T\left(x, x_{0}\right) \vec{J}\left(x_{0}\right), \\
& T\left(x, x_{0}\right)=\hat{\mathcal{I}}+\sum_{n \geq 1} \int_{x_{0} \leq t_{1} \leq \ldots \leq t_{n} \leq x} B\left(t_{n}\right) B\left(t_{n-1}\right) \ldots B\left(t_{1}\right) \mathrm{d} t_{1} \ldots \mathrm{~d} t_{n},
\end{aligned}
$$

where $B(t)=\epsilon \frac{\mathrm{d} \log (f(t)-1)}{\mathrm{d} t}$

Iterated Integrals and Uniformly Transcendental Form of Solutions

Iterated integrals with kernels of the type

$$
B(t) \propto \frac{1}{t-a}
$$

are well-known the literature! These are so-called Goncharovs (hyperlogarithms) polylogarithms (GPLs) [A.B. Goncharov, 2001]

$$
\begin{aligned}
& G\left(a_{1}, \ldots, a_{n} ; x\right)=\int_{0}^{x} \frac{\mathrm{~d} t}{t-a_{1}} \circ \frac{\mathrm{~d} t}{t-a_{2}} \circ \ldots \circ \frac{\mathrm{~d} t}{t-a_{n}} \\
& G\left(0_{1}, \ldots, 0_{n} ; x\right)=\lim _{\varepsilon \rightarrow 0} \operatorname{Reg}_{\varepsilon} \int_{\varepsilon}^{x}\left(\frac{\mathrm{~d} t}{t}\right)^{\circ n}=\frac{1}{n!} \log ^{n}(x)
\end{aligned}
$$

Goncharov polylogarithms (and iterated integrals), Riemann zeta functions, π constant all have a property called "transcendental weight" $w(f)=n: n \in \mathbb{Z}$

$$
w(\pi) \rightarrow 1, w\left(G\left(a_{1}, a_{2} ; x\right)\right) \rightarrow 2, w(\zeta(3)) \rightarrow 3, \text { etc. }
$$

Uniformly transcendental (UT) functions

$$
J_{i}=C_{i, 0}+\epsilon C_{i, 1}+\epsilon^{2} C_{i, 2}+\ldots
$$

where $w\left(\epsilon^{n}\right)=-n$, therefore UT-functions are function of zero transcendental weight.

Workflow

- Algebraic change of variables is needed to remove square roots

$$
\begin{aligned}
& x \rightarrow \frac{1-\xi}{\xi}\left(1-\chi^{2} \xi\right) \\
& y \rightarrow-\chi^{2}
\end{aligned}
$$

- First solve ξ-equations asymptotically in the limit $\xi \rightarrow 1$ (soft limit) [R. Lee, A. Smirnov, V. Smirnov, 2017; KK, K. Melnikov, C. Wever, 2016]

$$
j_{i}=\sum_{j, k, l} c_{i, j, k, l}(\chi)(1-\xi)^{j-k \epsilon} \log ^{\prime}(1-\xi)+\mathcal{O}((1-\xi))
$$

- We use asymptotic solutions to fix boundary conditions of exact ξ differential equations in the $\xi \rightarrow 1 \& \chi \rightarrow 0$ limits.
- We find all boundary conditions by means of known methods, e.g. method of regions [Beneke, Smirnov, Jantzen], and Mellin-Barnes expansion [Boos, Davydychev, Tausk, Smirnov, Czakon]
- all boundary conditions are brought to UT form with known methods.

Workflow

- Thanks to LIBRA, we find transformation \hat{T} and obtain ϵ-form of differential equations.
- After many judicious transformations we obtain

$$
\mathbf{d} \vec{J}=\epsilon \sum_{k=1}^{6} \hat{B}_{k} \mathbf{d} \log \left(W_{k}\right) \cdot \vec{J}
$$

- Our "alphabet" consist of following "letters"

$$
\left\{W_{k}\right\}=\left\{\xi, 1-\xi, 1-\chi^{2} \xi^{2}, 1-\chi^{2} \xi, 1+\chi^{2}(-2+\xi) \xi, 1+\chi^{2}(\xi-1) \xi\right\}
$$

Iterated Integrals instead of Goncharov's polylogarithms

Remember that integration kernels has a particular form, i.e. $\frac{1}{t-1}$ Our kernels are not of this form. We can force such a form by rationalizing some algebraic "letters".
We avoid this by using instead a formal definition of iterated integrals with general "letters" [Badger, Hartanto, et al., 2021]! Finally, iterated integrals can be evaluated in GiNaC [Walden, Weinzierl, 2021]. This way, we integrate our integrals up to $\mathcal{O}\left(\epsilon^{6}\right)$.

A Few Words About Double-Real Corrections

Double-Real: massless final states

$$
\begin{aligned}
& I=\int \mathrm{d}^{d} L_{1} \mathrm{~d}^{d} L_{2} \delta^{+}\left[\left(P-L_{1}-L_{2}\right)^{2}\right] \\
& \times \frac{\delta^{+}\left[L_{1}^{2}\right] \delta^{+}\left[L_{2}^{2}\right]}{D_{1}^{a_{1}} D_{2}^{a_{2}} D_{3}^{a_{3}} D_{4}^{a_{4}}}
\end{aligned}
$$

All 24 integrals are formally done!

Double-Real: massive final

 states

$$
\begin{aligned}
& I=\int \mathrm{d}^{d} L_{1} \mathrm{~d}^{d} L_{2} \delta^{+}\left[L_{2}^{2}-m^{2}\right] \times \\
& \frac{\delta^{+}\left[L_{1}^{2}-m^{2}\right] \delta^{+}\left[\left(P-L_{1}-L_{2}\right)^{2}\right]}{D_{1}^{a_{1}} D_{2}^{a_{2}} D_{3}^{a_{3}} D_{4}^{a_{4}}}
\end{aligned}
$$

There are yet 12 master integrals to compute.

Instead of Conclusions

- We report our progress on the calculations of next-to-next-to leading order correction to intrinsic structure functions
- We computed pure virtual, real-virtual, and partially double-real corrections.
"wish list"
- The last missing contribution to charm structure functions
- This ingredient can be used to derive the last PDF matching coefficient at NNLO.
- It will be nice to perform a comparison of our FONLL against full ACOT at NNLO.

