

Charm production and hadronization in pp and p-Pb collisions at the LHC with ALICE

ANNALENA KALTEYER, GSI DARMSTADT, UNIVERSITÄT HEIDELBERG ON BEHALF OF THE **ALICE COLLABORATION**

Heavy flavor production in pp collisions

$$\frac{d\sigma^{\text{hh}\to H_{qx}}}{dp_{\text{T}}} = f_{i}(x_{1}, \mu_{f}^{2}) f_{j}(x_{2}, \mu_{f}^{2}) \times \frac{d\sigma^{q}}{dp_{\text{T}}} \times D_{q\to H_{q}}(z_{q} = \frac{p_{H_{q}}}{p_{q}}, \mu_{f}^{2})$$

Parton distribution functions (PDFs)

Hard scattering cross section (pQCD)

Fragmentation function (hadronization)

Test pQCD-based calculations with heavy flavor (HF) hadron production measurements

- > Cross section of charm and beauty hadron production is typically calculated in a factorization approach
 - Fragmentation functions are constrained from e⁺e⁻ and ep measurements
 - Typical assumption: fragmentation functions apply universally across e⁺e⁻, pp and p–Pb collision systems
- Yield ratios of hadrons are sensitive to heavy quark hadronization

The ALICE experiment

ALICE

Time Projection Chamber (TPC):

Tracking, PID via d*E*/d*x*

Inner Tracking System (ITS):

Tracking and vertexing

Time Of Flight (TOF):

PID via time of flight

 $\Lambda_c^+ \text{ (udc)} \rightarrow pK^-\pi^+, pK_s^0$

$$\Sigma_{\rm c}^{0,++}$$
 (ddc, uuc) $\rightarrow \Lambda_{\rm c}^{+}\pi^{-,+}$

$$\Xi_c^0 (dsc) \rightarrow \Xi^- e^+ \nu_e, \Xi^- \pi^+$$

$$\Xi_c^+ \; (usc) \to \Xi^- \pi^+ \pi^+$$

$$\Omega_{\rm c}^0 ({\rm ssc}) \to \Omega^- \pi^+$$

$$D^0(\bar{u}c) \rightarrow K^-\pi^+$$

$$D^+(\bar{d}c) \to K^-\pi^+\pi^+$$

$$D_s^+(\bar{s}c) \to \Phi \pi^+ \to K^-\pi^+\pi^+$$

Meson production in pp collisions

Meson-to-meson yield ratio:

D+/D⁰ yield ratios are independent of meson momentum for prompt and non-prompt measurements (from decay of beauty hadrons). Charm and beauty meson-to-meson yield ratios are well described by FONLL calculations, based on the factorization approach assuming fragmentation functions from e⁺e⁻ collisions

See talk by Pietro Antonioli (12:30) for non-prompt measurements and beauty studies.

Baryon production in pp collisions

Baryon-to-meson yield ratios:

- $ho \Lambda_c^+/D^0$ depends significantly on hadron momentum
- ➤ Yield ratio is underestimated by models based on the factorization using charm fragmentation functions from e⁺e⁻ collisions

Non-universal hadronization via fragmentation with further hadronization mechanisms?

Phys. Rev. C 104 (2021) 054905

Λ_c^+ production down to $p_T = 0$

- For $p_T > 3$ GeV/c Λ_c^+/D^0 larger in p–Pb collisions than in pp collisions
- \triangleright Harder $p_T(\Lambda_c^+)$ spectrum

or multiplicity
dependence?

- \triangleright Significant fraction of charm cross section at low p_T : vital for a complete picture of hadronization
- New measurements in pp and p–Pb collisions are consistent between collision energies, $\sqrt{s} = 5.02 \text{ TeV}$ and $\sqrt{s} = 13 \text{ TeV}$, and pp and p–Pb collision systems

Baryon-to-meson yield ratio - models

J.P. Christiansen, P. Z. Skands: JHEP 1508 (2015) 003

PYTHIA 8

- Models based on fragmentation functions from e⁺e⁻ collisions underestimate the data (PYTHIA 8 Monash, HERWIG 7)
- Models including color reconnection beyond leading color describe the data (PYTHIA 8 CR Mode 2)

In multi-parton-interactions "junction" topologies enhance the charm baryon production

Phys. Rev. Lett. 127, 202301

Baryon-to-meson yield ratio - models

PLB 821 (2021) 136622

Catania

- Assumes a thermalized system of gluons, u,d,s quarks
- and anti-quarks (QGP)
- ➤ Hadronization via coalescence and fragmentation
 - at p_T ≈ 0 charm quarks hadronize only via coalescence
 - at high p_T fragmentation is dominant

Fragmentation

Coalescence

Phys. Rev. Lett. 127, 202301

Baryon-to-meson yield ratio - models

M. He, R. Rapp: PLB 795 (2019) 117-121

Statistical Hadronization Model

- ➤ Replaces the complexity of hadronization by thermostatistical weights governed by the masses of available hadron states at a universal hadronization "temperature"
- Feed-down from an augmented set of excited charm baryons necessary to describe Λ_c^+/D^0
 - PDG: $5 \Lambda_c$, $3 \Sigma_c$, $8 \Xi_c$, $2 \Omega_c$
 - RQM: additional 18 Λ_c , 42 Σ_c , 62 Ξ_c , 34 Ω_c

Phys. Rev. Lett. 127, 202301

Resonant charmed baryon states

Larger Σ_c/D^0 wrt. e^{+e-} partially accounts for enhanced Λ_c^+/D^0 yield ratio

 \triangleright Feed-down from Σ_c to Λ_c^+ :

$$\frac{\Lambda_c^+(\leftarrow \Sigma_c)}{\Lambda_c^+} = 0.38 \pm 0.06 \text{(stat.)} \pm 0.06 \text{(syst.)}$$

- Overestimated by models with color reconnection
- \triangleright Significant enhancement of Σ_c/D^0 yield ratio in pp collisions wrt. e⁺e⁻ collisions (PYTHIA 8 Monash)
- $\succ \Sigma_c$ is well described by SHM+RQM, Catania (fragmentation + coalescence), QCM (coalescence)

Strange charmed baryon production

 $\Xi_c^0/\Sigma_c^{0,+,++}$ in pp in agreement with PYTHIA Monash tune

Similar suppression of $\Xi_c^{0,+}$ and $\Sigma_c^{0,+,++}$ in e⁺e⁻ collisions?

PRL 127(2021)127, 272001

- \triangleright Enhancement of Ξ_c/D^0 yield ratio by factor ~30 in pp collisions wrt. e⁺e⁻ collisions (PYTHIA 8 Monash)
- ightharpoonup PYTHIA with CR-BLC and the SHM+RQM also underestimate Ξ_c/D^0 yield ratio
- \triangleright Catania describes the shape down to $p_T \approx 2 \text{ GeV/}c$ and is close to the data

Doubly strange charmed baryon production

Belle: $\frac{\Omega_c^0}{\Xi_c^0} \approx 0.1$ ALICE*: $\frac{\Omega_c^0}{\Xi_c^0} \approx 1$

fragmentation fraction ~7%

Belle: PRD 97, 072005 (2018)

Sizable Ω_c^0 contribution to charm production at LHC energies?

$$\mathrm{BR}ig(\Omega_\mathrm{c}^0 o \Omega^-\pi^+ig) imes \Omega_\mathrm{c}^0/\mathrm{D}^0$$

$$\mathrm{BR}\!\left(\Omega_{\mathrm{c}}^{0} o \Omega^{-} \pi^{+}\right) \!\! imes \!\! \Omega_{\mathrm{c}}^{0} / \Xi_{\mathrm{c}}^{0}$$

* BR($\Omega_c^0 \to \Omega^- \pi^+$) = $(0.51 \pm 0.07)\%$ is not measured \to use calculation for scaling Y. Hsiao et al. EPJC 80, 1066 (2020)

- > Baryon-to-baryon and baryon-to-meson yield ratios show a significant increase over all models
- Catania comes closest to data and describes baryon-to-baryon yield ratio when including higher mass resonance decays

Multiplicity dependence of charm production $\frac{\Lambda_c^+/D^0}{D_s^+/D^0}$

Significant modification of p_T spectrum with multiplicity

Models:

- > PYTHIA Monash describes D_s⁺/D⁰ but fails to reproduce Λ_c^+/D^0
- > PYTHIA with CR-BLC qualitatively describes both yield ratios
- Canonical Ensemble (CE) statistical hadronization (SH) model describes Λ_c^+/D^0 but does not describe the multiplicity (in)dependence of D_s^+/D^0

PLB 829 (2022) 137065

Multiplicity dependence of charm production Λ_c^+/D^0

p_T integrated

 $p_{\tau}(GeV/c)$ p_{τ} differential

$p_{\rm T}$ -integrated $\Lambda_{\rm c}^+/{\rm D}^0$:

No significant variation as a function of multiplicity or collision system within the uncertainties

Multiplicity dependence due to momentum redistribution, no modification of overall yield

Comparison with strangeness sector:

Similarity between Λ_c^+/D^0 and Λ/K_s^0 yield ratios versus multiplicity

Possible common mechanisms for lightand heavy-flavor baryon production

Charm fragmentation fractions

p-Pb:

- D^0 , Λ_c^+ (new): measured down to $p_T = 0$
- D^+ , D_s^+ : extrapolated to $p_T = 0$ using POWHEG+PYTHIA
- Ξ_c^0 in p–Pb not yet measured: $\sigma_{pp}(\Xi_c^0) \times 208 \times R_{pPb}(\Lambda_c^+)$

$$\frac{f(c \to \Xi_c^0)}{f(c \to \Lambda_c^+)} = 0.39 \pm 0.07 \text{ (stat) } ^{+0.08}_{-0.07} \text{ (syst) (pp)}$$

$$\frac{f(c \to \Xi_c^+)}{f(c \to \Lambda_c^+)} = \frac{f(s \to \Xi^-)}{f(s \to \Lambda^0)} \sim 0.004 \text{ (e+e-)}$$

Eur. Phys. J. C75 (2015) 19 PRD 105, L011103 (2022)

pp and p-Pb results are compatible

Significant baryon enhancement with respect to e⁺e⁻ and e⁻p collisions

Total charm cross section

Total charm cross section:

Measured at midrapidity in pp and p–Pb (new) collisions at $\sqrt{s_{\rm NN}}=5.02~{\rm TeV}$ as a sum of ground state hadron cross sections

- Cross sections in pp and p-Pb collisions are compatible within the uncertainties
- Results are on the upper edge of FONLL and NNLO calculations

Summary and outlook

Heavy-flavor baryon production gives unique insights into hadronization mechanisms in hadronic collisions

- Additional hadronization mechanisms could be needed to describe the measurements
- Models including quark coalescence / recombination, or including feed-down from unmeasured resonance states, successfully reproduce most measured species

Detectors in ALICE Run 3

Larger data sample and upgraded apparatus (ITS 2):
Closer to interaction point, lower material budget,
faster readout, improved granularity and spatial
resolution

Physics with ITS 3:

Full beauty reconstruction and reconstruction of multiple charmed baryons

Backup

Nuclear modification factor

Nuclear modification factor:

- Charm nuclear modification factor is slightly lower than unity but consistent within the systematic uncertainties
- No significant difference in overall charm production
 between pp and p-Pb
 collision systems

