

Beauty production in small systems with ALICE at the LHC

P. Antonioli, INFN Bologna for the ALICE Collaboration

Beauty in small systems: why?

The heavy-flavour production is a test of pQCD

- large quark mass provides hard scale
- pQCD can calculate cross sections down to low p_T

- ✓ for an experiment as ALICE (devoted to QGP studies) pp is a "reference" system.
- ✓ surprising results on the charm sector (especially c-baryons) at the LHC showed fragmentation is not well understood
 - → b as heavier candle to check mass-dependent QCD mechanisms (dead-cone)
 - → check & test hadronization in the b-sector too

ALICE results on charm@DIS2022: Annalena's talk https://indico.cern.ch/event/1072533/contributions/4778077/

ALICE detector complements HF studies at the LHC

low p_T reach at LHC: uniqueness of ALICE

|y| < 0.5 in pp, as well as HF-electrons

complementary to LHCb in rapidity

Find beauty: how?

0.2

10

ML based selection

ML algorithms (based on Boosted Decision Trees) used to separate prompt and non-prompt D-mesons: D⁰, D⁺ and D⁺_s (Multi-classification algorithm: prompt, non-prompt, combinatorial background)

Main BDT input:

- displacements of tracks from primary vertex
- D-meson decay length
- D-meson impact parameter
- cosine of the pointing angle

JHEP 05 (2021) 220

100

 p_{\perp} (GeV/c)

8 10 12 14 16 18 20 22 24

non-prompt D-mesons in pp at $\sqrt{s} = 5.02 \text{ TeV}$

JHEP 05 (2021) 220

- $f_s / (f_u + f_d)$ fragmentation fractions of HQ to strange/non-strange mesons compatible with previous measurements (different \sqrt{s} and collision system)
- General agreement with pQCD calculations (FONLL/GM-VFNS)

Beauty@ALICE: what's new?

A rich set of new measurements!

- ✓ Non-prompt D*+ polarization in pp at \sqrt{s} =13 TeV
- ✓ Multiplicity dependence of non-prompt D production
- ✓ Beauty hadron to electron decay in pp
- ✓ Non-prompt Λ_c production in small systems: pp and p-Pb
- ✓ Non-prompt and prompt Λ_c/D^0 in pp
- ✓ b-tagged jets in pp and p-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV
- ✓ bb production cross-section
- ✓ non-prompt J/Ψ

These results from data samples mainly from LHC RUN 2

ALICE results on Y-polarization@DIS2022: Yanchun's talk https://indico.cern.ch/event/1072533/contributions/4778 125/

System	Year(s)	\sqrt{s}_{NN} (TeV)	L_{int}
Pb—Pb	2010,2011	2.76	~75 μb⁻¹
	2015	5.02	~0.25 nb ⁻¹
	2018	5.02	~0.55 nb ⁻¹
Xe—Xe	2017	5.44	~0.3 µb⁻¹
p—Pb	2013	5.02	~15 nb ⁻¹
	2016	5.02, 8.16	~3 nb ⁻¹ ; ~25 nb ⁻¹
pp	2009-2013	0.9, 2.76, 7, 8	~200 µb ⁻¹ ; ~100 nb ⁻¹ ;
			~1.5 pb ⁻¹ ; ~2.5 pb ⁻¹
	2015,2017	5.02	~1.3 pb ⁻¹
	2015-2018	13	~36 pb ⁻¹

D^{*+} polarization in pp @ \sqrt{s} = 13 TeV

$$\mathrm{D}^{*+}
ightarrow \mathrm{D}^0 \pi^+$$
 (BR 67.7%) $\mathrm{D}^0
ightarrow \mathrm{K}^- \pi^+$

$$\mathrm{D}^0
ightarrow \mathrm{K}^-\pi^+$$

 $c\tau = 120 \mu m (prompt) / 500 \mu m (non-prompt)$

 ρ_{00} = spin matrix element (no polarization \rightarrow 1/3)

$$\frac{dN}{d\cos\theta^*} = N_0 \times [(1 - \rho_{00}) + (3\rho_{00} - 1)\cos^2\theta^*]$$

non-zero polarization for non-prompt prompt D*+ unpolarized

as expected by PHYTHIA8+EvtGen

looking forward for Pb-Pb studies (role of high B fields)

"validation" of prompt /non-prompt separation!

Multiplicity dependence of non-prompt D production

- A tool to study hadronization: comparison with models
- $f_{\text{non-prompt}}/f^{\text{MB}}_{\text{non-prompt}}$ = no significant dependence with multiplicity expected (and measured)
- D⁰ and D⁺ average

- CGC describes data
- PYTHIA tunes (ropes and enhanced CR) show some tensions with data at high mult

Monash: P. Skands et al., arXiv:1404.5630 CR Mode 0,2,3: J. Christiansen and P. Skands, JHEP08 (2015) 003 CGC: I. Schmidt and M. Siddikov, PRD 101 (2020) 094020 Color ropes: C. Bierlich et al., JHEP03 (2015) 148

DIS2022 - 2-6/5/2022

P. Antonioli - ALICE

Electrons from beauty-hadron decays in pp @ vs = 13 TeV

- \checkmark H_b → I + v_I + X have BR ≈ 10%
- ✓ e identification via TPC+TOF
- ✓ beauty hadrons decays identified via track impact parameter
- ✓ Sizable decay length (ct \approx 450 μ m) of beauty hadrons

ALICE preliminary

cross section ratios at different vs: good agreement with FONLL

data

Non-prompt Λ_c production in small systems: pp and p-Pb

- ML method to extract non-prompt component applied to Λ_{c}
- $\Lambda_c \rightarrow pK^0_s$ and $\Lambda_c \rightarrow pK^-\pi^+$
- FONLL predictions in agreement include use of $f(b \rightarrow \Lambda^0_b)$ from LHCb

- non-prompt $\Lambda_{\rm c}$ also in p-Pb!
- R_{pPb} non-prompt compatible with unity (and with R_{pPb} prompt)
- large uncertainties → Run3

Baryon-to-meson ratio (Λ_c/D^0) for prompt and non-prompt components

- non-prompt Λ_c gives access to Λ_b (and B-mesons)
- main discrepancies between data and pQCD estimates at low (< 4 GeV/c) p_T (as for prompt component)
- hint of higher tension for non-prompt

from Annalena's talk this morning:

ALI-PREL-503700

Baryon-to-meson ratio (Λ_c/D^0) for prompt and non-prompt components

12

- non-prompt Λ_c gives access to Λ_b (and B-mesons)
- main discrepancies between data and pQCD estimates at low (< 4 GeV/c) p_T (as for prompt component)
- hint of higher tension for non-prompt
- BR & fragmentation fractions uncertainties play a role

ALI-PREL-503700

b-tagged jets in pp and p-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV

JHEP01(2022)178

tagging HF jets allow one to study production and fragmentation separately CNM effects can differ in LF/HF sectors ALICE has access to low p_T b-jets

two methods for tagging: impact parameter (IP) and distance of most displaced 3-prong secondary vertex (SV)

b-jet CMS measurement for $p_{T,jet} > 50 \text{ GeV/c}$ (PLB 754 (2016) 59)

NLO calculations describe the data

b-jet fraction comparison at \sqrt{s} = 5.02 TeV and \sqrt{s} = 13 TeV

spectrum for inclusive jets from arXiv:2202.01548 b-jet spectrum at 5.02 TeV from JHEP01(2022)178

Note b-jet fraction measured at p_T =10 GeV/c is a lower value than in previous measurements at LHC!

(ATLAS Eur. Phys. J. C (2011) 71:1846)

b-tagged jets in pp and p-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV

 $R_{\mathrm{pPb}}^{\mathrm{b\text{-}jet}}$

- consistent within uncertainties for IP/SV methods
- consistent within uncertainties with unity (and with a 1.1 valued predicted by a mild nPDF modification due to antishadowing)

CMS-ALICE complementarity "at a glance"

ALICE results on HF-jets@DIS2022: Ravindra's talk

https://indico.cern.ch/event/1072533/contributions/4778077/

P. Antonioli - ALICE

non-prompt J/Ψ in pp

Prompt component well described by models, FONLL fits well non-prompt J/ Ψ Similar agreement at \sqrt{s} = 5.02 TeV

non-prompt J/ Ψ in p-Pb

arXiv:2105.04957 (results at \sqrt{s} = 5.02 TeV)

0.6

0.4

non-prompt J/ψ

ALI-PUB-488721

$$\sigma(p + Pb \to b\overline{b} + X) = 35.5 \pm 5.0 \; (stat.) \pm 4.8 \; (syst.) \; ^{+1.2}_{-1.0} \; (extr.) \; mb.$$

(total c.s. consistent with previous measurements with total uncertainty reduced by a factor 2)

But we can do better putting together LHC experiments (and visible regions):

$$\sigma(p + Pb \rightarrow b\bar{b} + X) = 33.8 \pm 2.0 \text{ (stat.)} \pm 3.4 \text{ (syst.)} ^{+0.4}_{-0.5} \text{ (extr.)} \text{ mb} \text{ (ALICE and LHCb)}.$$

Hint of less pronounced suppression at p_T < 3 GeV/c for non-prompt component with respect to prompt

 p_{\pm} (GeV/c)

ICE, -1.37 < y < 0.43

EPPS16 reweight (Lansberg et al.)

Conclusions

Direct measurement of prompt / non-prompt component in charmed mesons, baryons and quarkonia allow ALICE to study bb production in small systems

- Since first publication last year for D-meson production, the technique to select non-prompt component used for a rich set of observables in small systems
- FONLL and pQCD calculations describe generally well data with some tension for the baryons (as for prompt), testing fragmentation and hadronization
- QCD-inspired generators show some tensions to describe production as a function of multiplicity
- Key reference for Pb-Pb collisions analyses established, CNM effects b-dependent not visible
- We expect to find & study <u>more beauty</u> in Run 3 (ITS upgrade + continuous readout).

DIS2022 - 2-6/5/2022

P. Antonioli - ALICE

BACKUP