

Hadronization and Saturation with ECCE

Cheuk-Ping Wong (cpwong@lanl.gov) on behalf of ECCE

05-05-2022

LA-UR-22-23829

EIC Physics via HF and Jets

Propagation of energetic quarks through matter

3D imaging in momentum space

Origin of mass

Cheuk-Ping Wong (LANL)

3

Tracking

- Vertex and momentum reconstructions
- Barrel + Disks for endcaps
- 0.05% X/X0 per layer
- 10 μm pitch MAPS (Alice ITS3)
- Vertexing tracking performance fulfill EIC
 Yellow Report requirements

Calorimetry
Electrons

<u>EMcal</u>

Electron and photon measurements

e⁻-going: high-res. PbWO₄ crystals

Barrel: projective SciGlass

h-going: highly-granular shashlik sampling

<u>Hcal</u>

Jet energy measurements

Barrel: Fe/Sc tiles

Hadrons

h-going: longitudinally segmented Fe/Sc,
 W/Sc, W tiles. Integrated with EMcal

Tomographic imaging: Gluon Saturation

- Dense gluon field with a high transverse momentum (Q_{sat} > Q)
 - → smearing of jet
 - enhancement of di-jet imbalance in dihadron correlations
- Probe the transverse momenta of the dense gluon fields, that is to be of the order of the saturation scale, i.e. $k_T^{\sim} Q_{sat}(x, A)$

Projection of Dihadron Azimuthal Correlations

- Full simulations: Pythia 6 + GEANT4
- Tracks are boosted for the beam crossing angle
- Use EPS09 weighting to calculate the nPDF weight for eAu for each event
- Systematic errors are the differences between true and reconstructed e+p results
- ECCE can be able observed the away-side difference that is due to the saturation effect
- Detailed background studies are needed in the future

Propagation of energetic quarks through matter

Hadronization outside nuclear matter

Hadronization **inside** nuclear matter

Common observable in heavy-ion collisions:
 Nuclear modification factor

$$\begin{split} R_{AA} &= \frac{\sigma_{A+A}}{\text{scaled } \sigma_{p+p}} \\ &= \frac{d^2N_{A+A}/dp_Tdy}{\langle N_{coll} \rangle \cdot d^2N_{p+p}/dp_Tdy} \\ &= \begin{cases} <1 \text{ , suppression in A+A} \\ 1 \text{ , no modification} \\ >1 \text{ , enhancement in A+A} \end{cases} \end{split}$$

Propagation of energetic quarks through matter

Hadronization outside nuclear matter

Hadronization inside nuclear matter

Common observable in heavy-ion collisions:
 Nuclear modification factor

$$\begin{split} R_{\mathrm{e}A} &= \frac{\sigma_{\mathrm{e}+A}}{\mathrm{scaled}\,\sigma_{\mathrm{e}+p}} \\ &= \begin{cases} <1\,\text{, suppression in e+A} \\ 1\,\text{, no modification} \\ >1\,\text{, enhancement in e+A} \end{cases} \end{split}$$

R_{eA} of heavy flavor and jets

- Hadronization processes between light and heavy flavor
- Detangle initial state (nPDF) and final state effects (cold nuclear matter effect) in heavy-ion collisions

Projection of Jet R_{eA}

- Full simulations: Pythia 8 + GEANT4
- Use EPS09 weighting to calculate the nPDF weight for e+A for each event
- Uncertainty bands are from the systematic errors of nPDF
- ECCE can measure the modification of jet yields due to nuclear matter interactions
- To measure final state effect with different R selection, higher statistics (>1-year operation) may be required

Projection of Heavy Flavor in Tagged Jet

- Pythia 8 simulations with implementation of parameterized detector performance
- Jet radius, R=1
- Required at least 1 heavy flavor in a heavy flavor tagged jet
- Systematic errors obtained by changing the tracking system design
- ECCE can effectively differentiate between heavy flavor and light flavor tagged jets
- The projected errors from simulations indicate that ECCE can have the precision needed for heavy flavor R_{eA} study, and reduce uncertainty at the high z_h (>0.8) region

e -going Nuclear modification factor R_{eA} \bullet D⁰ ($\overline{D^0}$) stat. -2< η <0 D^0 ($\overline{D^0}$) sys. $-2 < \eta < 0$ Theory: -2<η<0 √s = 63.2 GeV e+p Int. Lumi.: 10 fb⁻¹ e+Au Int. Lumi. : 500 pb⁻¹ 0.7 0.2 0.3 0.4 0.5 0.6 hadron momentum fraction $z_{D^0} = p_{D^0}/p_{c-jet}$

barrel

h-going

Theory curves: PLB 816 (2021) 136261

Cheuk-Ping Wong (LANL)

3D imaging in Momentum Space using Centauro Jets

- A anti k_T algorithm that is longitudinally invariant (along z-axis in Breit frame)
- But matches features of spherical
 invariant algorithm that is beneficial
 for separating target (proton/hadron) and current (scattered quarks) jets
 → probe scattered quarks kinematics
- Can be used to obtain the transverse momentum distribution (TMD) of quarks inside the nucleons

Simulated Centauro Jets in ECCE

- Beam crossing angle is included in the simulations
- Track and EMcal jets with neutral clusters
- z_{iet} is the fraction of the scattered quark's momentum that is carried by the jet
- q_T is transverse momentum with respect to the scattered quark's direction
- Low q_T in $0.5 < z_{iet} < 1$: region of TMD phenomenology

Origin of mass

$$M_p > M_m$$
 Quark mass

https://www.flickr.com/photos/obamawhitehouse/4921383047/

Origin of mass

 $egin{aligned} M_p &= & M_m & ext{Quark mass} \ &+ M_q & ext{Quark energy} \ &+ M_g & ext{Gluon energy} \ &+ M_a & ext{Trace anomaly} \end{aligned}$

- Majority of hadron mass comes from the strong interaction that bind quarks and gluons
 → Decomposition of hadron mass helps
 - → Decomposition of hadron mass helps understand QCD
- The trace anomaly, which is due to quantum effect, is sensitive to exclusive production of quarkonia such as J/ψ near threshold

https://www.flickr.com/photos/obamawhitehouse/4921383047/

Projection of Trace Anomaly Contribution to Proton Mass

- eSTARLight with implementation of parameterized detector performance
- J/ ψ reconstruction from di-electron pairs
- Assume perfect electron identification in these initial study
- Systematic errors are the differences between true and reconstructed e+p results
- ECCE can provide precise measurement for the nucleon mass decomposition
- Additional Q^2 dependent measurement allows to constraint the production mechanism \rightarrow reduce the model dependence of the M_a extraction.

Summary

- ECCE is a physics driven and low risk detector design for the future EIC experiments
- Simulations demonstrate the capability of the ECCE detector:
 - Tomographic imaging of quarks and gluons: gluon saturation
 Dihadron azimuthal angle correlation
 - Propagation of energetic quarks through matter HF and jet R_{eA}
 - 3D imaging in momentum space
 TMD with Centauro jets
 - Origin of mass: trace anomaly Exclusive J/ψ production
- Outlook:
 - Fine tuning detector design and developing a technical detector design
 - Extend physics simulations to include background study

Analyzers

- Jet reconstruction performance
 Tristan Protzman and Rosi Reed (Lehigh University)
- Dihadron azimuthal angle correlation Nathan Grau (Augustana University)
- HF and jet ReA
 Xuan Li (Los Alamos National Laboratory)
 Raymond Ehlers
 (Oak Ridge National Laboratory → Lawrence Berkeley National Laboratory)
- Centauro jets
 John Lajoie (Iowa State University)
- Trace anomaly
 Xinbai Li and Wangmei Zha
 (University of Science and Technology of China)

Back Up

Jet Reconstruction Performance

Track jet reconstruction performance

Calorimeter jet reconstruction performance

HF Reconstruction Performance

True and Reconstructed Jet R_{eA}

DIS Born kinematics in the Breit frame

23

Reco. Jet Properties in Different Field Strengths

Using Centauro Algorithm

Jet Charge

Using Centauro Algorithm

Possible to isolate statistically enriched samples of u,d quarks jets

Projection of D⁰ R_{eA} with Different Magnetic Field

26