cryogenic chimney

SC magnet

flux return door

Heavy-flavor physics with the sPHENIX detector at RHIC

Sanghoon Lim

Pusan National University on behalf of the **sPHENIX** collaboration

DIS2022 - XXIX International Workshop on Deep-Inelastic Scattering and Related Subjects 2-6 May 2022, Santiago de Compostela, Spain

sPHENIX detector

- First HCal at RHIC for jet measurement
- Precise tracking and vertexing with the tracking system for heavy-flavor physics
- Large data sample (15 kHz trigger rate)

sPHENIX physics program

b \overline{b} b \overline{b} Y(1S) 0.28 fm Y(3S) 0.78 fmQuarkonium spectroscopy

Jet structure

vary momentum/angular scale of probe

Cold QCD

study proton spin, transverse-momentum, and nuclear effects

Parton energy loss

vary mass/momentum of probe

u, d, s

 $\boldsymbol{\mathcal{C}}$

b

vary size of probe

photon gluon

sPHENIX schedule

First data in early 2023!

sPHENIX construction

INTT assembly/testing

OHCAL installation complete!

(Intermediate Tracker) |NTT|

MVTX-

(MAPS Vertex detector)

Tracking performance

Tracking and vertexing based on the ACTS package

Computing and Software for Big Science 5, 23 (2021)

Upsilon measurement

- Upsilon measurement via di-electron channel
- Clear separation of three Upsilon states
- Precise study of sequential suppression in the QGP –Only chance to observe the fate of $\Upsilon(3S)$ at RHIC!

Heavy-flavor hadron measurement

- Heavy-flavor hadron reconstruction with KFParticle and kinematic selections
- Non-prompt hadrons can be further separated with DCA

Heavy-flavor hadron measurement

- Heavy-flavor hadron reconstruction with KFParticle and kinematic selections
- Feasible to reconstruct D^* and D_s^+ with three daughters

Heavy-flavor physics with sPHENIX

RAA

D-meson elliptic flow

- Precise measurement of prompt and non-prompt D-meson at $p_T < 10~{\rm GeV}/c$ to study mass-dependent energy loss and collectivity inside the QGP
- Significant constraints on diffusion coefficient and temperature dependence

b-jet measurement

Secondary Vertex Method

Reconstruct SV using tracks inside a jet cone

Select b-jet candidates based on the 3D flight distance of SV

First *b*-jet measurements at RHIC with sPHENIX!

Track Counting Method

lorh

h

- Tracks from b-jet likely have large DCA
- Select b-jet candidates based on the number of tracks with large DCA

b-jet tagging performance in p+p

- Simulation study with inclusive jets in PYTHIA8
- ~60% b-jet efficiency and ~40% b-jet purity with the track counting method
 →Performance compatible with CMS
- Properties of SV such as SV mass provides further discrimination power and data-driven validation

b-jet tagging in central Au+Au

- Simulation study with inclusive jets in PYTHIA8 embedded to background events from HIJING Au+Au of 0-4 fm
- ~40% b-jet efficiency and ~40% b-jet purity with both methods
 →Performance compatible with CMS
- Very high purity of b-jet samples can be selected with a SV mass cut

b-jet physics with sPHENIX

- First b-jet measurements at RHIC with sPHENIX
 will provide important information on mass-dependent response inside the QGP
- Further study with di-b-jet pairs (mass & p_T balance) to suppress contribution from gluon splitting

Outlook

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
		[GeV]	Weeks	Weeks	$ z < 10 {\rm cm}$	z < 10 cm
2023	Au+Au	200	24 (28)	9 (13)	3.7 (5.7) nb ⁻¹	4.5 (6.9) nb ⁻¹
2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz]	45 (62) pb ⁻¹
					4.5 (6.2) pb ⁻¹ [10%-str]	
2024	<i>p</i> ↑+Au	200	_	5	$0.003 \text{ pb}^{-1} [5 \text{ kHz}]$	$0.11 \mathrm{pb^{-1}}$
					$0.01 \text{ pb}^{-1} [10\%\text{-}str]$	
2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) nb ⁻¹	21 (25) nb ⁻¹

sPHENIX Beam Use Proposal endorsed by the BNL NPP (Nuclear and Particle Physics) PAC (Physics Advisory Committee)

- Extensive 3-year data taking starting in < 1 year
 - Year-1: commissioning and first physics
 - → Year-2: p+p and p+Au runs for heavy-ion reference and cold QCD physics
 - → Year-3: very large Au+Au dataset (141B events in total)

Precise study on heavy-flavor physics with sPHENIX!

First data in early 2023!!

BACKUP

b-jet physics with sPHENIX

Ratio between di-b-jet and di-light-jet

• Study with di-b-jet pairs (mass & p_T balance) to suppress contribution from gluon splitting

