

Probing exotic states in photon induced interactions at the LHC

Victor P. Goncalves

High and Medium Energy Group

Federal University of Pelotas (UFPel) - Brazil

Motivation

EXOTIC STATES: class of hadrons that decay to final states that contain a heavy quark and a heavy antiquark but cannot be easily accommodated in the remaining unfilled states in the $Q\overline{Q}$ level scheme.

Ever since the discovery of X(3872), we have a golden era in the discovery of the exotic states.

Motivation

At the LHC:

Motivation

At the LHC:

No solid explanation for these states!

This talk:

Main goal: Demonstrate that the study of photon - induced interactions at the LHC can be useful to demonstrate the existence and to probe the properties of exotic states.

Focus on:

- Production of exotic tetraquark states in photon photon interactions;
- Production of exotic pentaguark states in photon hadron interactions.

This talk:

Main goal: Demonstrate that the study of photon - induced interactions at the LHC can be useful to demonstrate the existence and to probe the properties of exotic states.

Focus on:

- Production of exotic tetraquark states in photon - photon interactions;

```
VPG, Moreira EPJC79 (2019) 7; PLB816 (2021) 136249
```

- Production of exotic pentaguark states in photon - hadron interactions.

LHC = Photon collider

- 1. γh Processes: $\sigma(h_1 h_2 \to X) = n_h(\omega) \otimes \sigma^{\gamma h \to X}(W_{\gamma h})$
- 2. $\gamma \gamma$ Processes: $\sigma(h_1 h_2 \to X) = n_1(\omega) \otimes n_2(\omega) \otimes \sigma^{\gamma \gamma \to X}(W_{\gamma \gamma})$

LHC = Photon collider

- Photon - Photon interactions -

 $\sigma\left(h_{1}h_{2} \to h_{1} \otimes R \otimes h_{2}; s\right) = \int \hat{\sigma}\left(\gamma\gamma \to R; W\right) N\left(\omega_{1}, \mathbf{b}_{1}\right) N\left(\omega_{2}, \mathbf{b}_{2}\right) S_{abs}^{2}(\mathbf{b}) d^{2}\mathbf{b}_{1} d^{2}\mathbf{b}_{2} d\omega_{1} d\omega_{2}$

$$\sigma^{PbPb}(\gamma\gamma) \approx Z^2 \sigma^{pPb}(\gamma\gamma) \approx Z^4 \sigma^{pp}(\gamma\gamma)$$

X(4350)

X(4350)

X(4350)

Constrained by Belle Collaboration.

Collision	Resonance	LHCb
		2 < Y < 4.5
$pp \ (\sqrt{s} = 13 \text{ TeV})$	$X(4350), 0^{++}$	(2.47 – 6.13) fb
	$X(4350), 2^{++}$	(2.52 - 6.88) fb
$pPb \ (\sqrt{s} = 8.1 \text{ TeV})$	$X(4350), 0^{++}$	(10.20 – 25.30) pb
	$X(4350), 2^{++}$	(10.30 – 28.30) pb
$PbPb \ (\sqrt{s} = 5.02 \text{ TeV})$	` //	(14.60 – 36.20) nb
	$X(4350), 2^{++}$	(14.90 – 40.60) nb

Such channel can be used to confirm (or not) the existence of resonances observed in e^+e^- colliders.

Fully - heavy tetraquark:

Total cross section:

$$\begin{split} \sigma \left(h_1 h_2 \to h_1 \otimes T_{4Q} \otimes h_2; s \right) \\ &= \int \hat{\sigma} \left(\gamma \gamma \to T_{4Q}; W \right) N \left(\omega_1, \mathbf{b}_1 \right) N \left(\omega_2, \mathbf{b}_2 \right) S_{abs}^2(\mathbf{b}) \frac{W}{2} \\ &\times d^2 \mathbf{b}_1 d^2 \mathbf{b}_2 dW dY \ , \end{split}$$

where:

$$\begin{split} \hat{\sigma}_{\gamma\gamma\to T_{4Q}}(\omega_1,\omega_2) \\ = 8\pi^2 (2J+1) \frac{\Gamma_{T_{4Q}\to\gamma\gamma}}{M_{T_{4Q}}} \delta(4\omega_1\omega_2 - M_{T_{4Q}}^2) \end{split}$$

Main assumption:

$$\Gamma_{T_{4Q} \to \gamma \gamma} \simeq \Gamma_{\chi_Q \to \gamma \gamma}$$

VPG, Moreira, PLB816 (2021) 136249.

X(6900):

Table 1Total cross sections for the $X(6900)[J^P] \to J/\psi J/\psi$ production by $\gamma \gamma$ interactions in pp, pPb and PbPb collisions for different center - of - mass energies considering the full LHC rapidity range as well as the rapidity ranges covered by the ALICE and LHCb detectors.

Collision	Resonance	LHC Full rapidity range	$ LHCb \\ 2.0 \leq Y \leq 4.5 $	ALICE $-1.0 \le Y \le 1.0$
$pp \ (\sqrt{s} = 13 \text{ TeV})$	$X(6900), 0^{++}$	26.3 fb	5.53 fb	6.34 fb
	$X(6900), 2^{++}$	31.9 fb	6.71 fb	7.71 fb
$pPb \ (\sqrt{s} = 8.1 \text{ TeV})$	$X(6900), 0^{++}$	76.3 pb	21.6 pb	22.4 pb
	$X(6900), 2^{++}$	92.4 pb	26.2 pb	27.2 pb
$PbPb \ (\sqrt{s} = 5.02 \text{ TeV})$	$X(6900), 0^{++}$	171.0 nb	22.3 nb	70.0 nb
	$X(6900), 2^{++}$	206.0 nb	26.7 nb	84.7 nb

Fig. 2. Rapidity distributions for the $X(6900) \rightarrow J/\psi J/\psi$ production by $\gamma \gamma$ interactions in (a) pp ($\sqrt{s} = 13$ TeV), (b) pPb ($\sqrt{s} = 8.1$ TeV) and (c) PbPb ($\sqrt{s} = 5.02$ TeV) collisions at the LHC.

LHC = Photon collider

- Photon - Hadron interactions -

Exclusive vector meson photoproduction in hadronic collisions:

^aVPG, Bertulani, PRC65, 054905 (2002)

Hidden-charm pentaguark:

- * VPG, Medina EPJC78, 693 (2018): Vector meson photoproduction at low energies can be studied in fixed target collisions at the LHC.
- *Beam gas collisions have been studied by the LHCb Collaboration and a similar programme can be developed by the AFTER@LHC experiment;

Probing Pentaguarks in photon - hadron interactions

Hidden-charm pentaguark:

Fixed - target mode:

VPG, Medina, PLB805 (2020) 135447.

Hidden-bottom pentaguark:

Table 1 Total cross sections (in pb) for the exclusive Υ photoproduction in fixed - target collisions at the LHC considering different rapidity ranges and $\sqrt{s} = 110 \, (69)$ GeV.

	Pb - p	Pb - He	Pb - Ar	Ar - p
$\sigma^{I\!P}$ (Full rapidity range)	168.0 (13.0)	1000.0 (140.0)	8400.0 (870.0)	22.0 (2.9)
σ^{P_b} (Full rapidity range)	46.0 (12.0)	75.0 (24.0)	380.0 (80.0)	3.6 (1.3)
$\sigma^{IP} \ (2.0 \le y \le 4.5)$	160.0 (12.0)	860.0 (100.0)	5100.0 (370.0)	18.0 (2.6)
$\sigma^{P_b} \ (2.0 \le y \le 4.5)$	45.0 (11.0)	72.0 (22.0)	300.0 (58.0)	3.3 (1.2)
$\sigma^{IP} \ (2.0 \le y \le 2.7)$	2.2 (0.52)	10.0 (2.7)	78.0 (16.0)	0.16 (0.058)
$\sigma^{P_b} \ (2.0 \le y \le 2.7)$	45.0 (11.0)	72.0 (22.0)	300.0 (58.0)	3.3 (1.2)

Xie, VPG, PLB805 (2020) 135447.

- ✓ Photon induced interactions can be used to constrain the physics in unexplorated energy regime.
- ✓ We can learn a lot of physics by studying the HE regime. However, the analysis of the low energy regime is also very important to constrain some important aspects of hadronic physics.
- The RHIC and LHC data for the photoproduction of exotic states will be fundamental to constrain and/or discriminate between different models.

- ✓ Photon induced interactions can be used to constrain the physics in unexplorated energy regime.
- We can learn a lot of physics by studying the HE regime. However, the analysis of the low energy regime is also very important to constrain some important aspects of hadronic physics.
- The RHIC and LHC data for the photoproduction of exotic states will be fundamental to constrain and/or discriminate between different models.

- ✓ Photon induced interactions can be used to constrain the physics in unexplorated energy regime.
- ✓ We can learn a lot of physics by studying the HE regime. However, the analysis of the low energy regime is also very important to constrain some important aspects of hadronic physics.
- The RHIC and LHC data for the photoproduction of exotic states will be fundamental to constrain and/or discriminate between different models.

- ✓ Photon induced interactions can be used to constrain the physics in unexplorated energy regime.
- ✓ We can learn a lot of physics by studying the HE regime. However, the analysis of the low energy regime is also very important to constrain some important aspects of hadronic physics.
- The RHIC and LHC data for the photoproduction of exotic states will be fundamental to constrain and/or discriminate between different models.

Thank you for your attention!

T4Q STATES

X(19000):

Table 2Total cross sections for the $X(19000)[J^P] \to \Upsilon\Upsilon$ production by $\gamma\gamma$ interactions in pp, pPb and PbPb collisions for different center - of - mass energies considering the full LHC rapidity range as well as the rapidity ranges covered by the ALICE and LHCb detectors.

Collision	Resonance	LHC Full rapidity range	$ LHCb \\ 2.0 \leq Y \leq 4.5 $	ALICE $-1.0 \le Y \le 1.0$
$pp \ (\sqrt{s} = 13 \text{ TeV})$	<i>X</i> (19000), 0 ⁺⁺ <i>X</i> (19000), 2 ⁺⁺	$2.40 \times 10^{-3} \text{ fb}$ $5.91 \times 10^{-3} \text{ fb}$	$4.90 \times 10^{-4} \text{ fb}$ $1.21 \times 10^{-3} \text{ fb}$	$6.88 \times 10^{-4} \text{ fb}$ $1.70 \times 10^{-3} \text{ fb}$
$pPb \ (\sqrt{s} = 8.1 \text{ TeV})$	$X(19000), 0^{++}$	5.60 fb	1.62 fb	1.96 fb
	$X(19000), 2^{++}$	13.80 fb	3.99 fb	4.83 fb
$PbPb \ (\sqrt{s} = 5.02 \text{ TeV})$	$X(19000), 0^{++}$	8.33 pb	0.564 pb	4.32 pb
	$X(19000), 2^{++}$	20.5 pb	1.38 pb	10.6 pb

Probing Pentaguarks in photon - hadron interactions

Photoproduction of P:

Collider mode:

